К основному контенту

НОВЫЕ ПУБЛИКАЦИИ

  Н ОВЫЕ ПУБЛИКАЦИИ РЕСУРСА      21 .06.2025 LCF домашнего гуся. Часть 2.   Изучение тазобедренного сустава и  LCF  на влажном препарате домашнего гуся. 20 .06.2025 LCF на а ккадском.   Первое в истории упоминание LCF на аккадском языке: « nim š u » .  LCF домашнего гуся. Часть 1.   Систематика домашнего гуся, обзор костной анатомии таза и бедра с акцентом на области крепления  LCF . 18 .06.2025 2025Copilot. Древний Египет.   Картина. Изображение об стоятельств и механизма травмы LCF.  17 .06.2025 2025ChatGPT . Современное искусство.   Картина. Изображение об стоятельств и механизма травмы LCF.  16 .06.2025 2025ChatGPT. Барокко.   Картина. Изображение об стоятельств и механизма травмы LCF.  15 .06.2025 Связка головки бедра – мистический элемент тазобедренного сустава.   Фильм, содержащий лекцию «Фундамент Учения о связке головки бедра». 01 .06.2025 Публикации о LCF в 2025 году (Май) . Статьи ...

Рассуждение о морфомеханике. 2.5.2 Гиалиновые поверхности коленного сустава


2.5.2 Гиалиновые поверхности коленного сустава

На плато большеберцовой кости содержится две суставные поверхности. Обе они покрыты гиалиновым хрящом и разделены, не имеющим хрящевого покрова, межмыщелковым возвышением. В нем выделяют внутренний (медиальный) и наружный (латеральный) межмыщелковый бугорок. Кзади от них лежит заднее межмыщелковое поле, а кпереди переднее, являющиеся областями прикрепления крестообразных связок.

Суставные поверхности имеют вогнутую форму и покрыты гиалиновым хрящом. Толщина слоя гиалинового хряща наибольшая в центре суставных поверхностей и уменьшается к их периферии. Гиалиновые хрящевые пластинки мыщелков подобны вогнутым и выпуклым линзам (Рис.2.25, 2.26). 

Собственные наблюдения, сделанные при проведении артроскопических операциях на коленном суставе, показали наличие у хрящевого покрова упругих свойств. Локальное давление на гиалиновый хрящ тупым инструментом выявлял его упругую деформацию. Это позволяет согласиться с мнением о наличии у гиалинового хряща суставных поверхностей амортизирующих свойств.

Обращает на себя внимание и тот факт, что гиалиновый хрящевой покров неоднороден по своей структуре. Неоднородность выявляется только при изломе или скалывании хрящевой поверхности. Боковая поверхность излома явно неровная с четко выраженной вертикальной исчерченностью и зубчатостью. Даже без дополнительного увеличения определяется, что вертикальная исчерченность обусловлена наличием множества тесно прилежащих друг к другу удлиненных сегментов (Рис.2.27). Каждый из этих сегментов имеет высоту от верхней до нижней поверхности хрящевого слоя, то есть их высота равна приблизительно толщине хрящевого покрова (за вычетом толщины надхрящницы). У сегментов выявляются торцевые и вертикальные грани, сходящиеся под некоторыми углами.

Рис.2.26. Гиалиновые линзы коленного сустава: «выпуклая» линза бедра вверху, «вогнутая» линза большеберцовой кости внизу, между ними мениск (схематично).

Микроанатомическое строение гиалинового хряща суставной поверхности напоминает структуру зубной эмали, состоящей, как известно, из эмалевых призм. По аналогии с эмалью сегменты гиалинового хряща мы предлагаем именовать – гиалиновыми призмами. Боковые грани и верхние торцы гиалиновых призм гладкие. Нижние торцы гиалиновых призм имеют неправильную форму, в связи с тем, что они контактируют с неровной поверхностью подлежащей губчатой кости. Здесь уместно отметить, что поверхность губчатой кости, подлежащая хрящу, напоминает волнообразную неровность дермоэпидермального соединения (Рис.2.28).

Рис.2.27. Костно-хрящевой блок на изломе (схематично).

Каждую из гиалиновых призм, практически невозможно отделить от прочих, что свидетельствует о большой прочности соединения. Однако излом гиалиновой оболочки в различных местах показывает единый план ее строения – везде обнаруживается ее сегментированность.

Рассечение хряща острым инструментом не позволяет выявить призматическое строение гиалинового хряща суставных поверхностей. Изучение обычным световым микроскопом срезов хряща, сделанных в вертикальном или горизонтальном направлении также, не позволяет обнаружить сегментираванность. Причиной нивелирования эффекта призматического строения, по всей видимости, является влияние на хрящ химических реактивов, применяемых для проводки и изготовления микропрепаратов. При изломе не обработанного суставного хряща можно также отметить наличие тонкой пленки на его поверхности – надхрящницы, скрепляющей верхние торцы гиалиновых призм.

Рис.2.28. Костно-хрящевая граница и силы, возникающие при артикуляции
(большие стрелки направление движений,
малые стрелки силы реакции кости,
препятствующие смещению гиалиновых поверхностей).


Линзы гиалинового хряща покрывающего суставные поверхности верхнего конца большеберцовой кости истончаются в периферическом направлении. Призматическое строение хорошо различимо в центре суставных поверхностей, где толщина хряща наибольшая и плохо дифференцируются по краям, где его толщина минимальна.

Учитывая то, что площадь вогнутой верхней поверхности суставного хряща меньше площади выпуклой нижней поверхности, а количество гиалиновых призм вполне конкретно, можно сделать логичный вывод о различии в величине поверхности торцов. Верхний торец, обращенный в сустав, должен быть закономерно меньше по площади, чем нижний торец, контактирующий с костной тканью. Следовательно, каждая из призм должна представлять собой клиновидный стержень – сегмент, с натягом установленный меж себе подобных. Благодаря описанной форме, давление на верхний торец гиалиновой призмы будет передаваться на большую по площади поверхность подлежащей кости. Соответственно, за счет клиновидности гиалиновых призм контактное напряжение в субхондральной кости будет несколько меньшим, чем на поверхности самого хряща. При локальном сжатии хряща гиалиновые призмы, ограниченно смещаются в направлении действующей на них силы, ненагруженные же призмы остаются неподвижны. Смещение одних гиалиновых призм относительно других ограничивают силы скрепляющего их межпризматического вещества. Им, по нашему мнению, являются гликозаминогликаны хрящевого матрикса. Чем более вязкое межпризматическое вещество, тем более упругим оказывается пластинка гиалинового хряща, а значит, более равномерно распределяется его давление на подлежащую кость (Рис.2.29).

Как известно подлежащая хрящу поверхность кости неровная и имеет множество выступов и впадин. Нормальное костно-хрящевое соединение подобно увеличенному дермоэпидермальному соединению. Такое строение позволяет суставному хрящу противостоять сдвигающим нагрузкам. Именно благодаря волнообразности костно-хрящевого соединения, гиалиновые хрящи не смещаются относительно кости при скольжении одной суставной поверхности относительно другой. В норме, гиалиновые призмы непосредственно контактируют с губчатым веществом подлежащей кости. Прослойка компактной кости, так называемый субхондральный склероз, в области мыщелков большеберцовой кости наблюдается обычно при патологии. Вместе с тем известны суставы, в которых субхондральный склероз нормальное явление, например в области верхнего сектора ВВ ТБС.

Рис.2.29. Силы, действующие на гиалиновые призмы. Вверху, гиалиновая призма выпуклой хрящевой поверхности (мыщелок бедра). За счет явления натяга сила F, воздействующая на гиалиновую призму, рассеивается в поперечном направлении, при этом сила F1 оказывается меньше F. Внизу, гиалиновая призма вогнутой поверхности мыщелка большеберцовой кости. Благодаря большей площади основания гиалиновой призмы сила F2 также меньше силы F, воздействующей на ее вершину (схематично).


Сегментированность суставного хряща наблюдается и на мыщелках дистального конца бедренной кости. Отличие заключается в том, что суставные поверхности их выпуклые. На выпуклых поверхностях слой гиалинового хряща подобен оболочке, ограничивающей костную ткань. Вследствие того, что площадь наружной поверхности хрящевого покрова больше площади внутренней его поверхности, а число гиалиновых призм, конечно, они также клиновидны. Основание их имеет большую площадь, нежели чем вершина и обращено в сторону полости сустава. Каждая из гиалиновых призм оказывается, как бы заклиненной между соседними. Давление на одну изолированную гиалиновую призму приводит к ее большему заклиниванию с возникновением эффекта натяга, при котором сила, действующая вдоль длинной оси призмы, частично нивелируется силами трения между гранями боковых поверхностей (Рис.2.29). Наблюдается явление рассеивание механической энергии передаваемой подлежащей костной ткани, подобно тому, как рассеивает энергию жировая клетчатка. На способность хрящевого покрова уменьшать напряжения в субхондральной кости и понижать удельное на нее давление, указывалось ранее и другими авторами (Шаргородский В.С. и соавт., 1989), однако механизм рассеивания ими подробно не освещался. После снятия нагрузки, за счет упругости подлежащей костной ткани и давления окружающих призм, возникает сила, выталкивающая призму в сторону суставной полости, что обуславливает восстановление формы суставной поверхности.

Клиновидность гиалиновых призм позволяет изменить направление внутренних сил, действующих в хряще. Благодаря эффекту заклинивания поток внутренних сил перпендикулярный поверхности хряща, преобразуется в поток сил ей параллельный. Иными словами, нормальные напряжения, возникающие в хрящевой поверхности, трансформируются в касательные. Призматическое строение гиалиновых оболочек дает им возможность тонко приспосабливаться к контактирующей с ними поверхности, как за счет упругой деформации призм, так и частично за счет их вертикального смещения.

Как известно толщина хрящевого покрова на вершине мыщелков бедренной кости достигает 5 мм, при нагрузке толщина хряща уменьшается (Жданов Д.А., 1979). Однако не только эластичность хряща позволяет погасить ударные нагрузки, но и эластичность подлежащей кости. Повышение упругости субхондральный кости, например, по причине ее склероза, уменьшает возможную амплитуду смещений гиалиновых призм, что увеличивает напряжение в гиалиновом хряще. Таким образом, рассмотренное выше строение хрящевого покрова выпуклых суставных поверхностей позволяет уменьшить давление и снизить действующие напряжения в подлежащей кости за счет эффекта натяга гиалиновых призм. В вогнутых хрящевых поверхностях разгрузка субхондральной кости обеспечивается, прежде всего, разностью между площадью наружной (суставной) и внутренней (костной) поверхности суставного хряща. Чем больше эта разность, тем больше эффект разгрузки кости.


                                                                     

Автор:

Архипов С.В. – С.В. Архипов-Балтийский является псевдонимом, который использовался до начала 2006 года с целью более точной дифференцировки на научном поле.

Цитирование:

Архипов-Балтийский СВ. Рассуждение о морфомеханике. Норма. В 2 т. Т. 1. Гл. 1-4. - Испр. и доп. изд. Калининград, 2004. [aleph.rsl.ru]

Архипов-Балтийский СВ. Рассуждение о морфомеханике. Норма. В 2 т. Т. 2. Гл. 5-6. - Испр. и доп. изд. Калининград, 2004. [aleph.rsl.ru]

Примечания:

Первая крупная публикация автора, посвященная морфомеханике живых систем, биомеханике пояса нижних конечностей и связки головки бедра, ligamentum capitis femoris (LCF).

Ключевые слова

ligamentum capitis femorisligamentum teres, связка головки бедра, анатомия, морфомеханика, биомеханика

СОДЕРЖАНИЕ РЕСУРСА

Биомеханика и морфомеханика

Популярные статьи

КАТАЛОГ ЛИТЕРАТУРЫ О LCF

  Каталог литературы о LCF   (Библиографический разде: книги, статьи, ссылки, упоминания…) 21-й ВЕК https://kruglayasvyazka.blogspot.com/2024/10/21.html   20-й ВЕК https://kruglayasvyazka.blogspot.com/2024/10/20.html   19-й ВЕК https://kruglayasvyazka.blogspot.com/2024/10/19.html   18-й ВЕК https://kruglayasvyazka.blogspot.com/2024/10/18.html   17-й ВЕК https://kruglayasvyazka.blogspot.com/2024/10/17.html   16-й ВЕК https://kruglayasvyazka.blogspot.com/2024/10/16.html   11-15-й ВЕК https://kruglayasvyazka.blogspot.com/2024/10/11-15.html   1-10-й ВЕК https://kruglayasvyazka.blogspot.com/2024/10/1-10.html   Железный ВЕК (10 – 1-й век до совр. эры) https://kruglayasvyazka.blogspot.com/2024/10/blog-post_87.html   НЕОЛИТ И БРОНЗА (8,000 – 2,000 лет до совр. эры) https://kruglayasvyazka.blogspot.com/2024/10/8-2.html   СОДЕРЖАНИЕ РЕСУРСА КАТАЛОГИ И БИБЛИОГРАФИИ Учение о...

2025АрхиповСВ. ПОЧЕМУ ВОССТАНОВЛЕНИЕ ВЕРТЛУЖНОЙ ГУБЫ МОЖЕТ БЫТЬ НЕЭФФЕКТИВНО?

Тематический Интернет-журнал О круглой связке бедра Апрель, 2025 Почему восстановление вертлужной губы может быть НЕЭФФЕКТИВНО?: заметка о таинственной «темной материи» в тазобедренном суставе Архипов С.В., независимый исследователь, Йоенсуу, Финляндия Аннотация Восстановление и реконструкция вертлужной губы не предотвращает остеоартрит и нестабильность тазобедренного сустава при ходьбе в случае удлинения ligamentum capitis femoris . Заключение сделано на основании математических расчетов и анализа результатов экспериментов на механической модели. Ключевые слова: артроскопия, тазобедренный сустав, вертлужная губа, ligamentum capitis femoris, ligamentum teres, связка головки бедренной кости, реконструкция, восстановление Введение Почти 80% первичных артроскопий тазобедренного сустава включает восстановление вертлужной губы (2019 WestermannRW _ RosneckJT ). Реконструкция – наиболее распространенная процедура для устранения патологии вертлужной губы и при ревизионной артроскопии (2...

Эндопротез с LCF. Часть 1

  Эндопротезы с аналогом ligamentum capitis femoris как свидетельства смены парадигмы в артропластике: Систематический обзор Часть  1. История, материал и методы Архипов С.В., независимый исследователь, Йоенсуу, Финляндия  

К вопросу о видео и рентген-визуализации LCF

К вопросу о видео и рентген-визуализации связки головки бедренной кости Известно, что в начале одноопорного периода шага присутствует супинация и сгибание в тазобедренном суставе, articulatio coxae , бедра, а в его средине и конце имеет место наклон таза, pelvis , в неопорную сторону и приведение ( Bombelli R ., 1993). Вероятно, эти особенности нормальной ходьбы впервые подметили скульпторы Древней Греции.  Нами изучены отчеты Оптической системы анализа (захвата) движений (разработчик  компания Qualisys, обработка программой компании C-Motion )  при исследовании закономерностей ходьбы человека в норме. Установлено: начале одноопорного периода шага таз, pelvis , во фронтальной плоскости наклоняется вниз в медиальную сторону. При этом в опорном тазобедренном суставе, articulatio coxae , наблюдается приведение (Рис. 1). Рис. 1. Отчет Оптической системы анализа движений при исследовании закономерностей ходьбы человека в норме; вверху – график движения таза во фронтальной...

2021(a)АрхиповСВ_СкворцовДВ

  Ligamentum teres и ее аналог в эндопротезе тазобедренного сустава – необходимы или излишни? Архипов С.В., Скворцов Д.В. (перевод статьи: Arkhipov SV , Skvortsov DV . Ligamentum Teres and its Analog in the Hip Endoprosthesis–Necessary or Superfluous? A Systematic Review . MLTJ . 2021:11(2)301-10.)   РЕЗЮМЕ Общая информация. Вывих эндопротеза тазобедренного сустава остается частым и серьезным осложнением артропластических вмешательств. Одним из способов предотвращения смещения эндопротеза является интеграция в его конструкцию аналога ligamentum teres. Цель. Обзор международного опыта проектирования, разработки и установки эндопротезов тазобедренного сустава с нативной ligamentum teres или ее аналогом. Материал и методы. Систематический патентный и непатентный поиск и анализ публикаций об эндопротезах тазобедренного сустава с нативной ligamentum teres или ее искусственным аналогом. Поиск проводился на соответствующих онлайн-платформах и в доступных библиотеках. ...