К основному контенту

НОВЫЕ ПУБЛИКАЦИИ

  Н ОВЫЕ ПУБЛИКАЦИИ РЕСУРСА:      06 .04 .2025 2025АрхиповСВ. ПОЧЕМУ ВОССТАНОВЛЕНИЕ ВЕРТЛУЖНОЙ ГУБЫ МОЖЕТ БЫТЬ НЕЭФФЕКТИВНО? Статья. Grok. Рецензия на статью «Почему восстановление вертлужной губы может быть неэффективно?»   Рецензия на статью. ChatGPT. Рецензия на статью «Почему восстановление вертлужной губы может быть неэффективно?»  Рецензия на статью. 02 .04 .2025 РАЗОБЩАЮЩИЙ ЭФФЕКТ ПРИ УДЛИНЕННОЙ LCF.   Публикация в группе  facebook.  01 .04 .2025 Публикации о LCF в 2025 году (Март)   Статьи и книги с упоминанием LCF опубликованные в марте 2025 года. 31 .03 .2025 Создан раздел  ИНТЕРНЕТ ЖУРНАЛ  для депонирования выпусков.  Интернет-журнал "О КРУГЛОЙ СВЯЗКЕ БЕДРА", март 2025. Второй  выпуск.  30 .03 .2025 2025АрхиповСВ. ДЕТИ ЧЕЛОВЕЧЕСКИЕ :  истоки библейских преданий в обозрении врача (2025). Эссе датирует написание книги Бытие, изображенные в ней события и упоминание LCF, а также опровергает авт...

Рассуждение о морфомеханике. 2.5.2 Гиалиновые поверхности коленного сустава


2.5.2 Гиалиновые поверхности коленного сустава

На плато большеберцовой кости содержится две суставные поверхности. Обе они покрыты гиалиновым хрящом и разделены, не имеющим хрящевого покрова, межмыщелковым возвышением. В нем выделяют внутренний (медиальный) и наружный (латеральный) межмыщелковый бугорок. Кзади от них лежит заднее межмыщелковое поле, а кпереди переднее, являющиеся областями прикрепления крестообразных связок.

Суставные поверхности имеют вогнутую форму и покрыты гиалиновым хрящом. Толщина слоя гиалинового хряща наибольшая в центре суставных поверхностей и уменьшается к их периферии. Гиалиновые хрящевые пластинки мыщелков подобны вогнутым и выпуклым линзам (Рис.2.25, 2.26). 

Собственные наблюдения, сделанные при проведении артроскопических операциях на коленном суставе, показали наличие у хрящевого покрова упругих свойств. Локальное давление на гиалиновый хрящ тупым инструментом выявлял его упругую деформацию. Это позволяет согласиться с мнением о наличии у гиалинового хряща суставных поверхностей амортизирующих свойств.

Обращает на себя внимание и тот факт, что гиалиновый хрящевой покров неоднороден по своей структуре. Неоднородность выявляется только при изломе или скалывании хрящевой поверхности. Боковая поверхность излома явно неровная с четко выраженной вертикальной исчерченностью и зубчатостью. Даже без дополнительного увеличения определяется, что вертикальная исчерченность обусловлена наличием множества тесно прилежащих друг к другу удлиненных сегментов (Рис.2.27). Каждый из этих сегментов имеет высоту от верхней до нижней поверхности хрящевого слоя, то есть их высота равна приблизительно толщине хрящевого покрова (за вычетом толщины надхрящницы). У сегментов выявляются торцевые и вертикальные грани, сходящиеся под некоторыми углами.

Рис.2.26. Гиалиновые линзы коленного сустава: «выпуклая» линза бедра вверху, «вогнутая» линза большеберцовой кости внизу, между ними мениск (схематично).

Микроанатомическое строение гиалинового хряща суставной поверхности напоминает структуру зубной эмали, состоящей, как известно, из эмалевых призм. По аналогии с эмалью сегменты гиалинового хряща мы предлагаем именовать – гиалиновыми призмами. Боковые грани и верхние торцы гиалиновых призм гладкие. Нижние торцы гиалиновых призм имеют неправильную форму, в связи с тем, что они контактируют с неровной поверхностью подлежащей губчатой кости. Здесь уместно отметить, что поверхность губчатой кости, подлежащая хрящу, напоминает волнообразную неровность дермоэпидермального соединения (Рис.2.28).

Рис.2.27. Костно-хрящевой блок на изломе (схематично).

Каждую из гиалиновых призм, практически невозможно отделить от прочих, что свидетельствует о большой прочности соединения. Однако излом гиалиновой оболочки в различных местах показывает единый план ее строения – везде обнаруживается ее сегментированность.

Рассечение хряща острым инструментом не позволяет выявить призматическое строение гиалинового хряща суставных поверхностей. Изучение обычным световым микроскопом срезов хряща, сделанных в вертикальном или горизонтальном направлении также, не позволяет обнаружить сегментираванность. Причиной нивелирования эффекта призматического строения, по всей видимости, является влияние на хрящ химических реактивов, применяемых для проводки и изготовления микропрепаратов. При изломе не обработанного суставного хряща можно также отметить наличие тонкой пленки на его поверхности – надхрящницы, скрепляющей верхние торцы гиалиновых призм.

Рис.2.28. Костно-хрящевая граница и силы, возникающие при артикуляции
(большие стрелки направление движений,
малые стрелки силы реакции кости,
препятствующие смещению гиалиновых поверхностей).


Линзы гиалинового хряща покрывающего суставные поверхности верхнего конца большеберцовой кости истончаются в периферическом направлении. Призматическое строение хорошо различимо в центре суставных поверхностей, где толщина хряща наибольшая и плохо дифференцируются по краям, где его толщина минимальна.

Учитывая то, что площадь вогнутой верхней поверхности суставного хряща меньше площади выпуклой нижней поверхности, а количество гиалиновых призм вполне конкретно, можно сделать логичный вывод о различии в величине поверхности торцов. Верхний торец, обращенный в сустав, должен быть закономерно меньше по площади, чем нижний торец, контактирующий с костной тканью. Следовательно, каждая из призм должна представлять собой клиновидный стержень – сегмент, с натягом установленный меж себе подобных. Благодаря описанной форме, давление на верхний торец гиалиновой призмы будет передаваться на большую по площади поверхность подлежащей кости. Соответственно, за счет клиновидности гиалиновых призм контактное напряжение в субхондральной кости будет несколько меньшим, чем на поверхности самого хряща. При локальном сжатии хряща гиалиновые призмы, ограниченно смещаются в направлении действующей на них силы, ненагруженные же призмы остаются неподвижны. Смещение одних гиалиновых призм относительно других ограничивают силы скрепляющего их межпризматического вещества. Им, по нашему мнению, являются гликозаминогликаны хрящевого матрикса. Чем более вязкое межпризматическое вещество, тем более упругим оказывается пластинка гиалинового хряща, а значит, более равномерно распределяется его давление на подлежащую кость (Рис.2.29).

Как известно подлежащая хрящу поверхность кости неровная и имеет множество выступов и впадин. Нормальное костно-хрящевое соединение подобно увеличенному дермоэпидермальному соединению. Такое строение позволяет суставному хрящу противостоять сдвигающим нагрузкам. Именно благодаря волнообразности костно-хрящевого соединения, гиалиновые хрящи не смещаются относительно кости при скольжении одной суставной поверхности относительно другой. В норме, гиалиновые призмы непосредственно контактируют с губчатым веществом подлежащей кости. Прослойка компактной кости, так называемый субхондральный склероз, в области мыщелков большеберцовой кости наблюдается обычно при патологии. Вместе с тем известны суставы, в которых субхондральный склероз нормальное явление, например в области верхнего сектора ВВ ТБС.

Рис.2.29. Силы, действующие на гиалиновые призмы. Вверху, гиалиновая призма выпуклой хрящевой поверхности (мыщелок бедра). За счет явления натяга сила F, воздействующая на гиалиновую призму, рассеивается в поперечном направлении, при этом сила F1 оказывается меньше F. Внизу, гиалиновая призма вогнутой поверхности мыщелка большеберцовой кости. Благодаря большей площади основания гиалиновой призмы сила F2 также меньше силы F, воздействующей на ее вершину (схематично).


Сегментированность суставного хряща наблюдается и на мыщелках дистального конца бедренной кости. Отличие заключается в том, что суставные поверхности их выпуклые. На выпуклых поверхностях слой гиалинового хряща подобен оболочке, ограничивающей костную ткань. Вследствие того, что площадь наружной поверхности хрящевого покрова больше площади внутренней его поверхности, а число гиалиновых призм, конечно, они также клиновидны. Основание их имеет большую площадь, нежели чем вершина и обращено в сторону полости сустава. Каждая из гиалиновых призм оказывается, как бы заклиненной между соседними. Давление на одну изолированную гиалиновую призму приводит к ее большему заклиниванию с возникновением эффекта натяга, при котором сила, действующая вдоль длинной оси призмы, частично нивелируется силами трения между гранями боковых поверхностей (Рис.2.29). Наблюдается явление рассеивание механической энергии передаваемой подлежащей костной ткани, подобно тому, как рассеивает энергию жировая клетчатка. На способность хрящевого покрова уменьшать напряжения в субхондральной кости и понижать удельное на нее давление, указывалось ранее и другими авторами (Шаргородский В.С. и соавт., 1989), однако механизм рассеивания ими подробно не освещался. После снятия нагрузки, за счет упругости подлежащей костной ткани и давления окружающих призм, возникает сила, выталкивающая призму в сторону суставной полости, что обуславливает восстановление формы суставной поверхности.

Клиновидность гиалиновых призм позволяет изменить направление внутренних сил, действующих в хряще. Благодаря эффекту заклинивания поток внутренних сил перпендикулярный поверхности хряща, преобразуется в поток сил ей параллельный. Иными словами, нормальные напряжения, возникающие в хрящевой поверхности, трансформируются в касательные. Призматическое строение гиалиновых оболочек дает им возможность тонко приспосабливаться к контактирующей с ними поверхности, как за счет упругой деформации призм, так и частично за счет их вертикального смещения.

Как известно толщина хрящевого покрова на вершине мыщелков бедренной кости достигает 5 мм, при нагрузке толщина хряща уменьшается (Жданов Д.А., 1979). Однако не только эластичность хряща позволяет погасить ударные нагрузки, но и эластичность подлежащей кости. Повышение упругости субхондральный кости, например, по причине ее склероза, уменьшает возможную амплитуду смещений гиалиновых призм, что увеличивает напряжение в гиалиновом хряще. Таким образом, рассмотренное выше строение хрящевого покрова выпуклых суставных поверхностей позволяет уменьшить давление и снизить действующие напряжения в подлежащей кости за счет эффекта натяга гиалиновых призм. В вогнутых хрящевых поверхностях разгрузка субхондральной кости обеспечивается, прежде всего, разностью между площадью наружной (суставной) и внутренней (костной) поверхности суставного хряща. Чем больше эта разность, тем больше эффект разгрузки кости.


                                                                     

Автор:

Архипов С.В. – С.В. Архипов-Балтийский является псевдонимом, который использовался до начала 2006 года с целью более точной дифференцировки на научном поле.

Цитирование:

Архипов-Балтийский СВ. Рассуждение о морфомеханике. Норма. В 2 т. Т. 1. Гл. 1-4. - Испр. и доп. изд. Калининград, 2004. [aleph.rsl.ru]

Архипов-Балтийский СВ. Рассуждение о морфомеханике. Норма. В 2 т. Т. 2. Гл. 5-6. - Испр. и доп. изд. Калининград, 2004. [aleph.rsl.ru]

Примечания:

Первая крупная публикация автора, посвященная морфомеханике живых систем, биомеханике пояса нижних конечностей и связки головки бедра, ligamentum capitis femoris (LCF).

Ключевые слова

ligamentum capitis femorisligamentum teres, связка головки бедра, анатомия, морфомеханика, биомеханика

СОДЕРЖАНИЕ РЕСУРСА

Биомеханика и морфомеханика

Популярные статьи

2025АрхиповСВ. ПОЧЕМУ ВОССТАНОВЛЕНИЕ ВЕРТЛУЖНОЙ ГУБЫ МОЖЕТ БЫТЬ НЕЭФФЕКТИВНО?

Тематический Интернет-журнал О круглой связке бедра Апрель, 2025 Почему восстановление вертлужной губы может быть НЕЭФФЕКТИВНО?: заметка о таинственной «темной материи» в тазобедренном суставе Архипов С.В., независимый исследователь, Йоенсуу, Финляндия Аннотация Восстановление и реконструкция вертлужной губы не предотвращает остеоартрит и нестабильность тазобедренного сустава при ходьбе в случае удлинения ligamentum capitis femoris . Заключение сделано на основании математических расчетов и анализа результатов экспериментов на механической модели. Ключевые слова: артроскопия, тазобедренный сустав, вертлужная губа, ligamentum capitis femoris, ligamentum teres, связка головки бедренной кости, реконструкция, восстановление Введение Почти 80% первичных артроскопий тазобедренного сустава включает восстановление вертлужной губы (2019 WestermannRW _ RosneckJT ). Реконструкция – наиболее распространенная процедура для устранения патологии вертлужной губы и при ревизионной артроскопии (2...

Моделирование взаимодействия LCF нормальной длины и отводящей группы мышц

  Моделирование взаимодействия LCF нормальной длины и отводящей группы мышц   С целью дальнейшего уточнения значения отводящей группы мышц для биомеханики тазобедренного сустава, articulatio coxae , мы изучили ее взаимодействие со связкой головки бедренной кости, ligamentum capitis femoris , нормальной длины. Аналог связки головки бедренной кости одним концом соединялся с моделью вертлужной впадины, будучи пропущенным через отверстие, расположенное на границы ямки и канавки фасонной выточки модели вертлужной впадины (Рис. 1). Рис. 1. Тазовая часть механической модели тазобедренного сустава птицы, через отверстие в фасонной выточке, лежащее на границе ямки (круглого углубления) и канавки (продольного углубления) пропущен аналог связки головки бедренной кости; вид с латеральной стороны.     Другой конец аналога связки головки бедренной кости соединялся с бедренной частью модели после размещения тазовой части модели на головке бедренной части модели. Методика соеди...

Механическая модель с аналогом связки головки бедренной кости

  Механическая модель с аналогом связки головки бедренной кости   Для уточнения механической функции связки головки бедренной кости , ligamentum capitis femoris , применена ранее описанная трехмерная механическая модельтазобедренного сустава без аналогов наружных связок. В качестве аналога связки головки бедренной кости , ligamentum capitis femoris , использован плетеный капроновый шнур диаметром 5 мм. Одним концом он соединялся с моделью вертлужной впадины тазовой части модели, будучи пропущенным, через одно из отверстий в ее фасонной выточке. Изначально мы пропустили аналог связки головки бедренной кости через отверстие, выполненное в центре фасонной выточки модели вертлужной впадины. Это, по нашей мысли, моделировало прикрепление связки к дну ямки вертлужной впадины (Рис. 1).   Рис. 1. Тазовая часть механической модели тазобедренного сустава, через центральное отверстие в фасонной выточке пропущен аналог связки головки бедренной кости (вид с латеральной сторо...

Моделирование взаимодействия удлиненной LCF и отводящей группы мышц

  Моделирование взаимодействия удлиненной LCF и отводящей группы мышц В настоящей серии экспериментов на трехмерной механической модели тазобедренного сустава, мы еще больше уд линили часть аналога связки головки бедренной кости, которая располагалась внутри шарнира – аналоге вертлужного канала. Для этого аналог связки головки бедренной кости одним концом он соединялся с моделью вертлужной впадины, будучи пропущенным, через отверстие в канавке фасонной выточке. При этом область крепления располагалась на расстоянии 25 мм от наружного края модели вертлужной впадины (Рис. 1). Рис. 1. Тазовая часть механической модели тазобедренного сустава через отверстие в канавке фасонной выточки, лежащим на расстоянии 25 мм от наружного края, пропущен аналог связки головки бедренной кости (вид с латеральной стороны).   В данном случае смоделировано крепление проксимального конца связки головки бедренной кости, ligamentum capitis femoris , в середине вырезки вертлужной впадины, incisur...

Grok. Рецензия на статью «Почему восстановление вертлужной губы может быть неэффективно?»

По нашей просьбе Grok (Грок), искусственный интеллект, разработанный xAI, написал рецензию на статью С.В. Архипова «Почему восстановление вертлужной губы может быть неэффективно?» (06.04.2025) . В соответствие с замечаниями статья доработана, и направлена для повторного рецензирования языковой модели ChatGPT , подготовленной для помощи в анализе и редактировании текстов OpenAI, 2025. Ниже приводится оригинальный текст рецензии от Grok:   Рецензия на статью С.В. Архипова «Почему восстановление вертлужной губы может быть неэффективно?: Заметка о таинственной „темной материи“ в тазобедренном суставе» сосредоточена на анализе аргументации, как того требует запрос. Автор утверждает, что восстановление вертлужной губы не предотвращает нестабильность тазобедренного сустава и остеоартрит при удлинении ligamentum capitis femoris (LCF). Этот тезис подкрепляется расчетами, экспериментами на механической модели и ссылками на литературу. Аргументация строится на двух ключевых положениях...