К основному контенту

НОВЫЕ ПУБЛИКАЦИИ

  Н ОВЫЕ ПУБЛИКАЦИИ РЕСУРСА      20 .06.2025 LCF на аккадском.   Первое в истории упоминание LCF на аккадском языке: « nim š u » .  LCF домашнего гуся. Часть 1.   Систематика домашнего гуся, обзор костной анатомии таза и бедра с акцентом на области крепления  LCF . 18 .06.2025 2025Copilot. Древний Египет.   Картина. Изображение об стоятельств и механизма травмы LCF.  17 .06.2025 2025ChatGPT . Современное искусство.   Картина. Изображение об стоятельств и механизма травмы LCF.  16 .06.2025 2025ChatGPT. Барокко.   Картина. Изображение об стоятельств и механизма травмы LCF.  15 .06.2025 Связка головки бедра – мистический элемент тазобедренного сустава.   Фильм, содержащий лекцию «Фундамент Учения о связке головки бедра». 01 .06.2025 Публикации о LCF в 2025 году (Май) . Статьи и книги с упоминанием LCF опубликованные в мае 2025 года. 30 .05.2025 Модель и протез.   Публикация в гр уппе faceboo k. 26 .05.202...

Рассуждение о морфомеханике. 1.2.25 Гладкая мышечная ткань

 

1.2.25 Гладкая мышечная ткань

Третьим видом мышечной ткани является гладкая мышечная ткань. Данная ткань участвует в образовании стенок полых органов, встречается в отдельных паренхиматозных органах, коже, сосудах. Гладкая мышечная ткань развивается из мезенхимы. Ее клетки, утрачивая отростки, приобретают веретеновидную форму и способность к тоническому сокращению (Гистология..., 1972).

Главным гистологическим элементом гладкомышечной ткани является гладкомышечная клетка. Так же, как и вышерассмотренные клеточные элементы скелетной и кардиальной поперечнополосатой мышечной ткани, гладкомышечные клетки способны к гипертрофии, но в отличие от них могут регенерировать и синтезировать компоненты межклеточного вещества. Особенностью клеток гладкомышечной ткани является отсутствие в них миофибрилл. Имеющиеся миофиламенты – актиновые и миозиновые фибриллы, объединяются лишь в фазе сокращения клетки. В основе механизма сокращения лежит процесс преобразования химической энергии АТФ в механическую. За счет фосфорилирования легкой цепи миозина, она получает возможность взаимодействовать с актином, при этом фибриллы смещаются друг относительно друга, укорачивая продольный размер клетки. Обратный процесс расслабления происходит после «разборки» миозиновых цепей. Возбуждение гладкомышечных клеток происходит под влиянием симпатической и парасимпатической частей вегетативной нервной системы, а также диффузии нейромедиаторов и при передаче потенциала действия через щелевые межклеточные контакты (Бойчук Н.В. и соавт., 1997).

Гладкомышечные клетки, соединяясь между собой посредством десмосом, образуют пучки, которые окружает соединительная ткань, содержащая как эластические, так и коллагеновые волокна, скрепленные аморфным веществом (Рис.1.32). Волокнистые структуры межклеточного вещества фиброзной и гладкомышечной ткани тесным образом взаимодействуют, участвуя в передаче силы сокращения. Скорость сокращения гладкой мускулатуры обычно значительно медленнее, чем у поперечнополосатой (Хэм А., Кормак Д., 1983).

Несмотря на указанное сила сокращения этих видов мышц в пересчете на единицу площади поперечного сечения часто одинакова составляя 30-40 Н/см2, однако затраты энергии гладкой мускулатуры в 100–500 раз меньше. Синтез гладкомышечных волокон и волокон межклеточного вещества обеспечивают образованных ими структурам пластичные или вязкоупругие свойства при растяжении (Дудель Й. и соавт., 1996).

Сила, с которой сокращаются гладкомышечные клетки, определяет направление и величину действующих в ткани напряжений. Отличительной особенностью органов, содержащих гладкомышечную ткань, является способность сохранять развиваемое усилие и деформируемое состояние в течение достаточно длительного времени, а, следовательно, сохранение ориентации и величины потоков внутренних сил. Так же продолжительное время гладкомышечной тканью может поддерживаться определенное давление в полости, стенку которой она образует, наряду с прочими видами тканей. Этот вид мышечной ткани генерирует напряжения и в сопряженных с ней структурах в фазовом режиме, причем фазы могут быть асимметричными и продолжаться достаточно долго.

Гладкомышечная ткань с материаловедческих воззрений полифазный композит. В главной, активной компонентой являются гладкомышечные волокна, как элементы переменной длины, способные генерировать силу и изменять интенсивность действующих в ткани напряжений. Упрочняющей компонентой являются коллагеновые и эластические волокна. Эти фибриллы более всего приспособлены к восприятию растягивающей нагрузки. Чем выше концентрация коллагена в гладкомышечной ткани, тем выше ее упругость. Преобладание же эластина придает ткани большие эластические свойства. Ярким примером структуры, постоянно испытывающей циклические растяжения, является внутренняя оболочка сердца, в которой превалируют эластические волокна и присутствуют клетки гладкомышечной ткани. Подобное сочетание эластических волокон и гладкомышечных клеток в эндокарде, представляет собой особый тип эластической ткани обладающей кроме свойств растяжимости еще и свойствами активного сокращения. Это позволяет дополнить известный ряд тканей, содержащих эластические волокна (эластических композитов): эластический хрящ, эластическая соединительная ткань, третьим видом - миоэластическая ткань.

Отличительной особенностью всех мышечных тканей является наличие в них сократительных фибрилл. Вместе с тем среди клеток соединительной ткани встречаются клетки, содержащие сократительные элементы - миофибробласты. Данные клеточные элементы имеют признаки, как фибробластов, так и гладкомышечных клеток. Они встречаются в стенках ран и, сокращаясь, участвуют в уменьшении их площади (Серов В.В., Шехтер А.Б., 1981). Миофибробласты в зависимости от обстоятельств функционируют в направлении либо мио-, либо фибриллогенеза (Саркисов Д.С., 1989).

Однако не только клетки мезодермы, но и клетки эктодермы способны трансформироваться в сократительные клеточные элементы (Хэм А., Кормак Д., 1983). В частности, в слюнных, слезных, потовых и молочных железах встречаются миоэпителиальные клетки, имеющие отростки и снабженные сократительным аппаратом. Его строение подобно актомиозиновому хемомеханическому преобразователю гладкомышечных клеток. Сокращение миоэпителиальных клеток, сжатие секреторных отделов и выводных протоков экзокринные желез, обеспечивает продвижение по ним секрета (Бойчук Н.В. и соавт., 1997). 


                                                                     

Автор:

Архипов С.В. – С.В. Архипов-Балтийский является псевдонимом, который использовался до начала 2006 года с целью более точной дифференцировки на научном поле.

Цитирование:

Архипов-Балтийский СВ. Рассуждение о морфомеханике. Норма. В 2 т. Т. 1. Гл. 1-4. - Испр. и доп. изд. Калининград, 2004. [aleph.rsl.ru]

Архипов-Балтийский СВ. Рассуждение о морфомеханике. Норма. В 2 т. Т. 2. Гл. 5-6. - Испр. и доп. изд. Калининград, 2004. [aleph.rsl.ru]

Примечания:

Первая крупная публикация автора, посвященная морфомеханике живых систем, биомеханике пояса нижних конечностей и связки головки бедра, ligamentum capitis femoris (LCF).

Ключевые слова

ligamentum capitis femorisligamentum teres, связка головки бедра, анатомия, морфомеханика, биомеханика

СОДЕРЖАНИЕ РЕСУРСА

Биомеханика и морфомеханика

Популярные статьи

КАТАЛОГ ЛИТЕРАТУРЫ О LCF

  Каталог литературы о LCF   (Библиографический разде: книги, статьи, ссылки, упоминания…) 21-й ВЕК https://kruglayasvyazka.blogspot.com/2024/10/21.html   20-й ВЕК https://kruglayasvyazka.blogspot.com/2024/10/20.html   19-й ВЕК https://kruglayasvyazka.blogspot.com/2024/10/19.html   18-й ВЕК https://kruglayasvyazka.blogspot.com/2024/10/18.html   17-й ВЕК https://kruglayasvyazka.blogspot.com/2024/10/17.html   16-й ВЕК https://kruglayasvyazka.blogspot.com/2024/10/16.html   11-15-й ВЕК https://kruglayasvyazka.blogspot.com/2024/10/11-15.html   1-10-й ВЕК https://kruglayasvyazka.blogspot.com/2024/10/1-10.html   Железный ВЕК (10 – 1-й век до совр. эры) https://kruglayasvyazka.blogspot.com/2024/10/blog-post_87.html   НЕОЛИТ И БРОНЗА (8,000 – 2,000 лет до совр. эры) https://kruglayasvyazka.blogspot.com/2024/10/8-2.html   СОДЕРЖАНИЕ РЕСУРСА КАТАЛОГИ И БИБЛИОГРАФИИ Учение о...

2025АрхиповСВ. ПОЧЕМУ ВОССТАНОВЛЕНИЕ ВЕРТЛУЖНОЙ ГУБЫ МОЖЕТ БЫТЬ НЕЭФФЕКТИВНО?

Тематический Интернет-журнал О круглой связке бедра Апрель, 2025 Почему восстановление вертлужной губы может быть НЕЭФФЕКТИВНО?: заметка о таинственной «темной материи» в тазобедренном суставе Архипов С.В., независимый исследователь, Йоенсуу, Финляндия Аннотация Восстановление и реконструкция вертлужной губы не предотвращает остеоартрит и нестабильность тазобедренного сустава при ходьбе в случае удлинения ligamentum capitis femoris . Заключение сделано на основании математических расчетов и анализа результатов экспериментов на механической модели. Ключевые слова: артроскопия, тазобедренный сустав, вертлужная губа, ligamentum capitis femoris, ligamentum teres, связка головки бедренной кости, реконструкция, восстановление Введение Почти 80% первичных артроскопий тазобедренного сустава включает восстановление вертлужной губы (2019 WestermannRW _ RosneckJT ). Реконструкция – наиболее распространенная процедура для устранения патологии вертлужной губы и при ревизионной артроскопии (2...

Эндопротез с LCF. Часть 1

  Эндопротезы с аналогом ligamentum capitis femoris как свидетельства смены парадигмы в артропластике: Систематический обзор Часть  1. История, материал и методы Архипов С.В., независимый исследователь, Йоенсуу, Финляндия  

К вопросу о видео и рентген-визуализации LCF

К вопросу о видео и рентген-визуализации связки головки бедренной кости Известно, что в начале одноопорного периода шага присутствует супинация и сгибание в тазобедренном суставе, articulatio coxae , бедра, а в его средине и конце имеет место наклон таза, pelvis , в неопорную сторону и приведение ( Bombelli R ., 1993). Вероятно, эти особенности нормальной ходьбы впервые подметили скульпторы Древней Греции.  Нами изучены отчеты Оптической системы анализа (захвата) движений (разработчик  компания Qualisys, обработка программой компании C-Motion )  при исследовании закономерностей ходьбы человека в норме. Установлено: начале одноопорного периода шага таз, pelvis , во фронтальной плоскости наклоняется вниз в медиальную сторону. При этом в опорном тазобедренном суставе, articulatio coxae , наблюдается приведение (Рис. 1). Рис. 1. Отчет Оптической системы анализа движений при исследовании закономерностей ходьбы человека в норме; вверху – график движения таза во фронтальной...

2021(a)АрхиповСВ_СкворцовДВ

  Ligamentum teres и ее аналог в эндопротезе тазобедренного сустава – необходимы или излишни? Архипов С.В., Скворцов Д.В. (перевод статьи: Arkhipov SV , Skvortsov DV . Ligamentum Teres and its Analog in the Hip Endoprosthesis–Necessary or Superfluous? A Systematic Review . MLTJ . 2021:11(2)301-10.)   РЕЗЮМЕ Общая информация. Вывих эндопротеза тазобедренного сустава остается частым и серьезным осложнением артропластических вмешательств. Одним из способов предотвращения смещения эндопротеза является интеграция в его конструкцию аналога ligamentum teres. Цель. Обзор международного опыта проектирования, разработки и установки эндопротезов тазобедренного сустава с нативной ligamentum teres или ее аналогом. Материал и методы. Систематический патентный и непатентный поиск и анализ публикаций об эндопротезах тазобедренного сустава с нативной ligamentum teres или ее искусственным аналогом. Поиск проводился на соответствующих онлайн-платформах и в доступных библиотеках. ...