К основному контенту

НОВЫЕ ПУБЛИКАЦИИ

  Н ОВЫЕ ПУБЛИКАЦИИ РЕСУРСА      05 .08.2025 Архипов СВ.  LCF при остеоартрите тазобедренного сустава. Обзор , 2025. 03 .08.2025 Архипов СВ.  LCF при врожденном вывихе бедра. Обзор , 2025. 02 .08.2025 1802CamperP. Автор об суждает отсутствие и неизвестную роль LCF  у слона и некоторых обезьян.  Архипов СВ. LCF при артрогрипозе. Обзор ,  2025.  Архипов СВ. LCF при асептическом некрозе. Обзор ,  2025.   01 .08.2025 Публикации о LCF в 2025 году (Июль)   Статьи и книги с упоминанием LCF опубликованные в июле 2025 года.  1803CamperP. Автор обсуждает отсутствие и неизвестную роль LCF  у орангутанга, слона, ленивца.  1888 BuissonGPE . Диссертация, посв ященная изучению функции LCF .  1824 MeckelJF . Автор отмечает отсутствие LCF  у орангутангов, трёхпалых ленивцев и черепах.  1898 LeiseringAGT.   Автор описывает LCF  у лошади и добавочную связку . 31 .07.2025 Инте рнет-журнал "О КР...

Рассуждение о морфомеханике. 1.2.25 Гладкая мышечная ткань

 

1.2.25 Гладкая мышечная ткань

Третьим видом мышечной ткани является гладкая мышечная ткань. Данная ткань участвует в образовании стенок полых органов, встречается в отдельных паренхиматозных органах, коже, сосудах. Гладкая мышечная ткань развивается из мезенхимы. Ее клетки, утрачивая отростки, приобретают веретеновидную форму и способность к тоническому сокращению (Гистология..., 1972).

Главным гистологическим элементом гладкомышечной ткани является гладкомышечная клетка. Так же, как и вышерассмотренные клеточные элементы скелетной и кардиальной поперечнополосатой мышечной ткани, гладкомышечные клетки способны к гипертрофии, но в отличие от них могут регенерировать и синтезировать компоненты межклеточного вещества. Особенностью клеток гладкомышечной ткани является отсутствие в них миофибрилл. Имеющиеся миофиламенты – актиновые и миозиновые фибриллы, объединяются лишь в фазе сокращения клетки. В основе механизма сокращения лежит процесс преобразования химической энергии АТФ в механическую. За счет фосфорилирования легкой цепи миозина, она получает возможность взаимодействовать с актином, при этом фибриллы смещаются друг относительно друга, укорачивая продольный размер клетки. Обратный процесс расслабления происходит после «разборки» миозиновых цепей. Возбуждение гладкомышечных клеток происходит под влиянием симпатической и парасимпатической частей вегетативной нервной системы, а также диффузии нейромедиаторов и при передаче потенциала действия через щелевые межклеточные контакты (Бойчук Н.В. и соавт., 1997).

Гладкомышечные клетки, соединяясь между собой посредством десмосом, образуют пучки, которые окружает соединительная ткань, содержащая как эластические, так и коллагеновые волокна, скрепленные аморфным веществом (Рис.1.32). Волокнистые структуры межклеточного вещества фиброзной и гладкомышечной ткани тесным образом взаимодействуют, участвуя в передаче силы сокращения. Скорость сокращения гладкой мускулатуры обычно значительно медленнее, чем у поперечнополосатой (Хэм А., Кормак Д., 1983).

Несмотря на указанное сила сокращения этих видов мышц в пересчете на единицу площади поперечного сечения часто одинакова составляя 30-40 Н/см2, однако затраты энергии гладкой мускулатуры в 100–500 раз меньше. Синтез гладкомышечных волокон и волокон межклеточного вещества обеспечивают образованных ими структурам пластичные или вязкоупругие свойства при растяжении (Дудель Й. и соавт., 1996).

Сила, с которой сокращаются гладкомышечные клетки, определяет направление и величину действующих в ткани напряжений. Отличительной особенностью органов, содержащих гладкомышечную ткань, является способность сохранять развиваемое усилие и деформируемое состояние в течение достаточно длительного времени, а, следовательно, сохранение ориентации и величины потоков внутренних сил. Так же продолжительное время гладкомышечной тканью может поддерживаться определенное давление в полости, стенку которой она образует, наряду с прочими видами тканей. Этот вид мышечной ткани генерирует напряжения и в сопряженных с ней структурах в фазовом режиме, причем фазы могут быть асимметричными и продолжаться достаточно долго.

Гладкомышечная ткань с материаловедческих воззрений полифазный композит. В главной, активной компонентой являются гладкомышечные волокна, как элементы переменной длины, способные генерировать силу и изменять интенсивность действующих в ткани напряжений. Упрочняющей компонентой являются коллагеновые и эластические волокна. Эти фибриллы более всего приспособлены к восприятию растягивающей нагрузки. Чем выше концентрация коллагена в гладкомышечной ткани, тем выше ее упругость. Преобладание же эластина придает ткани большие эластические свойства. Ярким примером структуры, постоянно испытывающей циклические растяжения, является внутренняя оболочка сердца, в которой превалируют эластические волокна и присутствуют клетки гладкомышечной ткани. Подобное сочетание эластических волокон и гладкомышечных клеток в эндокарде, представляет собой особый тип эластической ткани обладающей кроме свойств растяжимости еще и свойствами активного сокращения. Это позволяет дополнить известный ряд тканей, содержащих эластические волокна (эластических композитов): эластический хрящ, эластическая соединительная ткань, третьим видом - миоэластическая ткань.

Отличительной особенностью всех мышечных тканей является наличие в них сократительных фибрилл. Вместе с тем среди клеток соединительной ткани встречаются клетки, содержащие сократительные элементы - миофибробласты. Данные клеточные элементы имеют признаки, как фибробластов, так и гладкомышечных клеток. Они встречаются в стенках ран и, сокращаясь, участвуют в уменьшении их площади (Серов В.В., Шехтер А.Б., 1981). Миофибробласты в зависимости от обстоятельств функционируют в направлении либо мио-, либо фибриллогенеза (Саркисов Д.С., 1989).

Однако не только клетки мезодермы, но и клетки эктодермы способны трансформироваться в сократительные клеточные элементы (Хэм А., Кормак Д., 1983). В частности, в слюнных, слезных, потовых и молочных железах встречаются миоэпителиальные клетки, имеющие отростки и снабженные сократительным аппаратом. Его строение подобно актомиозиновому хемомеханическому преобразователю гладкомышечных клеток. Сокращение миоэпителиальных клеток, сжатие секреторных отделов и выводных протоков экзокринные желез, обеспечивает продвижение по ним секрета (Бойчук Н.В. и соавт., 1997). 


                                                                     

Автор:

Архипов С.В. – С.В. Архипов-Балтийский является псевдонимом, который использовался до начала 2006 года с целью более точной дифференцировки на научном поле.

Цитирование:

Архипов-Балтийский СВ. Рассуждение о морфомеханике. Норма. В 2 т. Т. 1. Гл. 1-4. - Испр. и доп. изд. Калининград, 2004. [aleph.rsl.ru]

Архипов-Балтийский СВ. Рассуждение о морфомеханике. Норма. В 2 т. Т. 2. Гл. 5-6. - Испр. и доп. изд. Калининград, 2004. [aleph.rsl.ru]

Примечания:

Первая крупная публикация автора, посвященная морфомеханике живых систем, биомеханике пояса нижних конечностей и связки головки бедра, ligamentum capitis femoris (LCF).

Ключевые слова

ligamentum capitis femorisligamentum teres, связка головки бедра, анатомия, морфомеханика, биомеханика

СОДЕРЖАНИЕ РЕСУРСА

Биомеханика и морфомеханика

Популярные статьи

СОДЕРЖАНИЕ РЕСУРСА

  LCF –  ключ к грациозной походке, выяснению причин болезней тазобедренного сустава и опровержению мифов о них. Мы представляем перспективное научное знание, необходимое для сбережения здоровья, разработки  имплантов и  новых способов лечения дегенеративно-дистрофических заболеваний тазобедренного сустава. Цель проекта: содействие сохранению нормальной походки и качества жизни, помощь в изучении механики  тазобедренного сустава, разработке эффективных способов лечения его болезней и травм.   СОДЕРЖАНИЕ  РЕСУРСА  БИБЛЕЙСКАЯ ТРАВМА (Художники и скульпторы о повреждении  LCF,   описанном в Библии: картины, скульптуры, иконы…) 1000Jacob&Archangel.  Фреска. Изображение обстоятельств и механизма травмы LCF. 17c.PatelP.  Картина. Изображение обстоятельств и механизма травмы LCF. 17c.OvensJ.  Картина. Изображение обстоятельств и механизма травмы LCF. 1639BreenberghB.  Картина. Изображение о...

ИСТОРИЯ ИЗУЧЕНИЯ ФУНКЦИЙ LCF

  История изучения функций LCF (Каталог обзоров по истории изучения основных функций ligamentum capitis femoris) Детализация функций LCF Функция ограничения движений, присущая LCF. Обзор    Перемешивающая функция LCF. Обзор Опорная функция LCF . Обзор Стабилизирующая функция  LCF . Обзор Чувствительная функция  LCF . Обзор Функция регу лировки внутрисуставного давления, присущая LCF. Обзор   Продуцирующая функция LCF. Обзор Защитная функция LCF. Обзор Функция корректировки движений LCF. Обзор Функция ритмовводителя, присущая LCF. Обзор Функция распределения нагрузки  LCF . Обзор Функция преобразования рычага, присущая  LCF. Обзор Обтурационная функция  LCF.  Обзор Силовая функция LCF. Обзор Эффекты функций  LCF. Обзор Функция преобразования энергии, присущая LCF. Обзор Функция обеспечения конгруэнтности, присущая LCF. Обзор Распределительная функция LCF. Обзор Демпфирующая функция LCF. Обзор Соединительная функция  LCF . О...

Общая классификация патологии LCF

Общая классификация патологии LCF Версия: 20240420 Аннотация Анализ литературных данных и собственные морфологические наблюдения позволили предложить Общую классификацию патологии ligamentum capitis femoris . Введение В России первые попытки классификации патологии связки головки бедренной кости, ligamentum capitis femoris (LCF) были предприняты морфологами. Л.И. Гаевская (1954) различала три типа LCF: : 1) длинные толстые (длина 41–51 мм, толщина 5 мм), 2) короткие тонкие (длина 10–20 мм, толщина 1 мм), 3) длинные небольшой толщины (длиной 43–45 мм, при толщине 3 мм и длинной 28–30 при толщине 4–5 мм). В.В. Кованов, А.А. Травин (1963) выделил три разновидности гистологического строения LCF: 1) с преобладанием рыхлой соединительной ткани; 2) с преобладанием плотной соединительной ткани; 3) с равномерным распределением рыхлой и плотной соединительной ткани. Развитие артроскопической хирургии позволило выявить различные, ранее неописанные виды патологии LCF , что побуд...

Функция регулировки внутрисуставного давления, присущая LCF. Обзор

  Функция регулировки внутрисуставного давления,  присущая  ligamentum capitis femoris.  Обзор Архипов С.В.     Содержание [i]   Резюме [ii]   Введение [iii]   17-й век [iv]   18-й век [v]   19-й век [vi]   20-й век [vii]   21-й век [viii]   Некоторые сомневающиеся [ix]   Отдельные противники [x]   Список литературы [xi]   Приложение [i]   Резюме Представлены мнения о наличии у ligamentum capitis femoris (LCF) функции регулирования давления в тазобедренном суставе. [ii]   Введение В конце 20-го века наш предметный анализ доступных источников информации, показал, что проблема роли LCF в опорно-двигательной системе не решена. Разногласия по столь важному вопросу подвигли заняться собственными научными изысканиями. Параллельно накапливались и анализировались мнения иных авторов. Этот процесс продолжается до сих пор. Здесь мы планируем собрать воедино все значимые цитаты и мысли, касающиеся функц...

Публикации о LCF в 2025 году (Июль)

     Публикации о  LCF   в 2025 году (Июль)   Tekcan, D., Bilgin, G., & Güven, Ş. Evaluation of Risk Factors for Developmental Dysplasia of the Hip.  HAYDARPAŞA NUMUNE MEDICAL JOURNAL ,   65 (2), 99-103.    [i]     jag.journalagent.com   Domb, B. G., & Sabetian, P. W. (2025). Greater Trochanteric Pain Syndrome: Gluteal Tendinopathy, Partial Tear, Complete Tear, Iliotibial Band Syndrome, and Bursitis. In  Orthopaedic Sports Medicine  (pp. 1-17). Springer, Cham.    [ii]    link.springer.com   Kuhns, B. D., Becker, N., Patel, D., Shah, P. P., & Domb, B. G. (2025). Significant Heterogeneity in Existing Literature Limits Both Indication and Outcome Comparability Between Studies Involving Periacetabular Osteotomy For Acetabular Dysplasia With or Without Arthroscopy Despite Improvement for Both: A Systematic Review.  Arthroscopy .   [iii]    arthroscopyjourna...