К основному контенту

НОВЫЕ ПУБЛИКАЦИИ

  Н ОВЫЕ ПУБЛИКАЦИИ РЕСУРСА:      01 .04 .2025 Публикации о LCF в 2025 году (Март)   Статьи и книги с упоминанием LCF опубликованные в марте 2025 года. 31 .03 .2025 Создан раздел  ИНТЕРНЕТ ЖУРНАЛ  для депонирования выпусков.  Интернет-журнал "О КРУГЛОЙ СВЯЗКЕ БЕДРА", март 2025. Второй  выпуск.  30 .03 .2025 2025АрхиповСВ. ДЕТИ ЧЕЛОВЕЧЕСКИЕ :  истоки библейских преданий в обозрении врача (2025). Эссе датирует написание книги Бытие, изображенные в ней события и упоминание LCF, а также опровергает авторство Ветхозаветного Моисея. 29 .03 .2025   С. Архипов против F . Pauwels ☺   Публикация в группе  facebook.  28 .03 .2025 Биомеханика тазобедренного сустава без LCF .  Публикация в группе  facebook.  27 .03 .2025 Наружные связки и LCF .  Публикация в группе  facebook.  26 .03 .2025 модель тазобедренного сустава с аналогом lcf .  Публикация в группе  facebook.  25...

Рассуждение о морфомеханике. 1.2.8 Соединительные ткани со специальными свойствами


1.2.8 Соединительные ткани со специальными свойствами

К группе соединительных тканей со специальными свойствами относят жировую, ретикулярную и эмбриональную соединительную ткань - мезенхиму, а также ткань, образующую синовиальные выстилки (Бойчук Н.В. и соавт., 1997). В той или иной мере механические функции выполняет каждая из соединительных тканей со специальными свойствами несмотря на то, что основная их роль может быть другой.

Важной составляющей частью тела человек является жировая ткань, занимающая, по данным H.Skeleton (1972), 10-50% от общего веса тела (Ульмер Х.-Ф. и соавт., 1996). Распределение подкожной жировой клетчатки, а также ее количество зависит от особенностей обмена веществ, пола, возраста, профессии (Синельников Р.Д., 1974). Так по данным Т.Н.Маляренко и соавт. (1988) в возрасте 18 лет у мужчин при средней массе тела 71±9 кг и росте 172±6 см, средняя масса общего жира 8±8 кг. У женщин того же возраста при средней массе 59±6 кг и росте 160±7 см, средняя масса общего жира 15.9±2.3 кг.

Основные функции жировой ткани терморегулирующая, депонирующая, трофическая, защитная, формообразовательная, механическая, а также синтез, регуляция и мобилизация липидов, свободных жирных кислот, триглицеридов. Выделяется белая и бурая жировая ткань, последняя, прежде всего, принимает участие в термогенезе (Ульмер Х.-Ф. и соавт., 1996).

Жировая ткань состоит из скоплений адипоцитов образующих жировые дольки, которые в отдельных случаях «армированы» ретикулиновыми и коллагеновыми волокнами. Основную массу адипоцита составляет жировая капля. Таким образом, с физической точки зрения жировая долька представляет собой вязкую жидкость, пронизанную волокнами и разделенную мембранами клеток, что в целом предает ей свойства геля (Бойчук Н.В. и соавт., 1997).

Каждая жировая долька отграничена друг от друга перегородками из рыхлой соединительной ткани различного порядка, в целом же совокупность этих тканей образует ячеистую структуру - жировую клетчатку (Сорокин А.П., 1973). Жир, содержащийся в жировой клетке, при температуре тела имеет консистенцию жидкого масла (Хэм А., Кормак Д., 1982).

С точки зрения физики жировую клетчатку можно охарактеризовать как своего рода твердую органическую пену. Твердые пены, как известно, отличаются тем, что в твердой дисперсионной среде диспергирована жидкость (Глинка Н.Л., 1979). С позиции материаловедения жировая клетчатка представляет собой двухкомпонентный композит с вязкоупругими свойствами. Одна компонента - рыхлая соединительная ткань, в виде мембран, является упрочняющей, а другая – жидкая, жир, выступает в роли наполнителя. Образующая междольковые перегородки рыхлая соединительная ткань сама является композитом, состоящим из волокон и связующего их основного вещества. Поэтому, строго говоря, жировая клетчатка, представляет собой композиционный материал, состоящий из трех компонент – волокон, основного вещества рыхлой соединительной ткани и жира. Несмотря на то, что общий план строения жировой клетчатки однотипен во всех частях тела, ее механические свойства различны.

Белая жировая ткань доминирует над бурой. Механические свойства ее не являются факультативными, но, как отмечалось выше, отличаются в зависимости от локализации жировой клетчатки. Механические свойства клетчатки обеспечиваются различием в толщине перегородок, размерах жировых долек и их формой, которые неодинаковы даже в пределах одного сегмента конечности. Ячейки могут быть округлыми в глубоких слоях и прямоугольными или многоугольными в прилежащих к коже участках (Дьячкова Г.В., 1994).

Наиболее рыхлой и непрочной следует признать жировую клетчатку забрюшинного пространства. Кроме термоизоляции и защиты органов брюшной полости, она представляет собой опору для сосудисто-нервных структур и содержимого брюшной полости, прежде всего, в положении лежа. Нагрузка на данную ткань незначительна и, как следствие, жировые дольки крупные, а перегородки слабо выражены.

Меньший размер жировых долек у подкожной клетчатки на не опорных поверхностях тела – передней брюшной стенке, передней поверхности бедра и плеча, там также толще и междольковые перегородки. Эта закономерность еще более выражена в подкожно-жировой клетчатке поверхностей, приспособленных для опоры – ягодицы, пятки.

Ярким примером соответствия строения действующим силам, является жировая клетчатка ладоней и подошв. В данных областях сегментация, пожалуй, достигает своего предела. Здесь присутствуют мелкие и крупные дольки, отграниченные хорошо выраженными перегородками (Рис.1.13) (Sarrafian S.K., 1993). Содержимое долек находится под некоторым давлением, что хорошо проявляется при рассечении этой клетчатки - жировые дольки эвентрируют в рану.

Следует отметить, что жировая клетчатка данной локализации не участвует в трофике, а ее объем не меняется даже при недостаточном питании. Механические свойства жировой клетчатки допустимо определить, как вязкоупругие. Строение же можно охарактеризовать как септированный гель, что позволяет жировой клетчатке противостоять силам сжатия. Это обеспечивается за счет упругой эластичности междольковых перегородок и несжимаемости жира. При сжатии сила давления на гелеобразное содержимое дольки, по закону Паскаля, распределяется по всем направлениям одинаково (Рис.1.14).

Соответственно в междольковых перегородках появляются растягивающие силы и наблюдается деформация растяжения. Растяжению жировой клетчатки противодействует входящая в ее структуру рыхлая соединительная ткань, образующая перегородки. Они, растягиваясь и изгибаясь, сдавливают находящийся меж ними жир, препятствующий сближению противоположных междольковых перегородок.

Исследования показали, что клетчатка пяточной области содержит многочисленные упругие волокна, формирующие поверхностное и глубокое сплетения окружающие жировые дольки (Рис.1.15). Подобное же строение имеет и клетчатка в области головок плюсневых костей. Означенные особенности позволяют жировой клетчатке эффективно гасить ударные нагрузки, возникающие при ходьбе (Sarrafian S.K., 1993).

Потоки внутренних сил, возникающие в подкожной жировой клетчатке, рассеиваются и трансформируются. Именно септация подкожно-жировой клетчатки, то есть ее деление на дольки соединительно-тканными перегородками, способствует рассеиванию действующей нагрузки (Щуров В.А., 1986).

Жировую клетчатку вполне можно охарактеризовать как биомеханический трансформатор сил растяжения в силы сжатия и наоборот. Кроме этого, жировая клетчатка, за счет рассеивания способна изменять величины внутренних сил и их вектор. Благодаря этим свойствам она обеспечивает защиту сосудисто-нервных структур от внешних нагрузок, причем замечено, что величина удельного давления перекрытия просвета сосудов стопы выше артериального давления, при этом у спортсменов данный показатель существенно больше, нежели чем у людей, не занимающихся спортом (Щуров В.А., 1986). На основании данного наблюдения цитированный автор, делает вывод о том, что стимулом для перестройки соединительных тканей стопы должна быть сама нагрузка, инициирующая процессы адаптации. Как можно заметить из сказанного об устройстве жировой клетчатки, здесь также имеется взаимосвязь строения и действующих нагрузок.  

Рис.1.14. Схема рассеивания нагрузки в жировой ткани.



                                                                     

Автор:

Архипов С.В. – С.В. Архипов-Балтийский является псевдонимом, который использовался до начала 2006 года с целью более точной дифференцировки на научном поле.

Цитирование:

Архипов-Балтийский СВ. Рассуждение о морфомеханике. Норма. В 2 т. Т. 1. Гл. 1-4. - Испр. и доп. изд. Калининград, 2004. [aleph.rsl.ru]

Архипов-Балтийский СВ. Рассуждение о морфомеханике. Норма. В 2 т. Т. 2. Гл. 5-6. - Испр. и доп. изд. Калининград, 2004. [aleph.rsl.ru]

Примечания:

Первая крупная публикация автора, посвященная морфомеханике живых систем, биомеханике пояса нижних конечностей и связки головки бедра, ligamentum capitis femoris (LCF).

Ключевые слова

ligamentum capitis femorisligamentum teres, связка головки бедра, анатомия, морфомеханика, биомеханика

СОДЕРЖАНИЕ РЕСУРСА

Биомеханика и морфомеханика

Популярные статьи

Публикации о LCF в 2025 году (Март)

  Публикации о LCF в 2025 году (Март):  Статьи и книги с упоминанием LCF опубликованные в марте 2025 года. Matsushita, Y., Sugiyama, H., Hayama, T., Sato, R., & Saito, M. (2025). Long-term Outcome of Pediatric Arthroscopic Surgery for Avulsion Fracture of the Ligamentum Teres: A Case Report.  JBJS Case Connector ,  15 (1), e25.   [i]      journals.lww.com   Arkhipov, S. V. (2025).  Inferior Portal for Hip Arthroscopy: A Pilot Experimental Study. Pt. 2. Inferior Portal Prototypes.  About Round Ligament of Femur . February   26, 2025.   [ii]    researchgate . net   Pfirrmann, C. W., & Kim, Y. J. (2025). Advanced Imaging. In  Surgical Hip Dislocation: A Comprehensive Approach to Modern Hip Surgery  (pp. 29-42). Cham: Springer Nature Switzerland.   [iii]      link.springer.com   Singh, R., & Yadav, N. (2025). Morphometry and Morphology of the Fovea Ca...

Моделирование взаимодействия LCF нормальной длины и отводящей группы мышц

  Моделирование взаимодействия LCF нормальной длины и отводящей группы мышц   С целью дальнейшего уточнения значения отводящей группы мышц для биомеханики тазобедренного сустава, articulatio coxae , мы изучили ее взаимодействие со связкой головки бедренной кости, ligamentum capitis femoris , нормальной длины. Аналог связки головки бедренной кости одним концом соединялся с моделью вертлужной впадины, будучи пропущенным через отверстие, расположенное на границы ямки и канавки фасонной выточки модели вертлужной впадины (Рис. 1). Рис. 1. Тазовая часть механической модели тазобедренного сустава птицы, через отверстие в фасонной выточке, лежащее на границе ямки (круглого углубления) и канавки (продольного углубления) пропущен аналог связки головки бедренной кости; вид с латеральной стороны.     Другой конец аналога связки головки бедренной кости соединялся с бедренной частью модели после размещения тазовой части модели на головке бедренной части модели. Методика соеди...

Механическая модель с аналогом связки головки бедренной кости

  Механическая модель с аналогом связки головки бедренной кости   Для уточнения механической функции связки головки бедренной кости , ligamentum capitis femoris , применена ранее описанная трехмерная механическая модельтазобедренного сустава без аналогов наружных связок. В качестве аналога связки головки бедренной кости , ligamentum capitis femoris , использован плетеный капроновый шнур диаметром 5 мм. Одним концом он соединялся с моделью вертлужной впадины тазовой части модели, будучи пропущенным, через одно из отверстий в ее фасонной выточке. Изначально мы пропустили аналог связки головки бедренной кости через отверстие, выполненное в центре фасонной выточки модели вертлужной впадины. Это, по нашей мысли, моделировало прикрепление связки к дну ямки вертлужной впадины (Рис. 1).   Рис. 1. Тазовая часть механической модели тазобедренного сустава, через центральное отверстие в фасонной выточке пропущен аналог связки головки бедренной кости (вид с латеральной сторо...

Моделирование взаимодействия удлиненной LCF и отводящей группы мышц

  Моделирование взаимодействия удлиненной LCF и отводящей группы мышц В настоящей серии экспериментов на трехмерной механической модели тазобедренного сустава, мы еще больше уд линили часть аналога связки головки бедренной кости, которая располагалась внутри шарнира – аналоге вертлужного канала. Для этого аналог связки головки бедренной кости одним концом он соединялся с моделью вертлужной впадины, будучи пропущенным, через отверстие в канавке фасонной выточке. При этом область крепления располагалась на расстоянии 25 мм от наружного края модели вертлужной впадины (Рис. 1). Рис. 1. Тазовая часть механической модели тазобедренного сустава через отверстие в канавке фасонной выточки, лежащим на расстоянии 25 мм от наружного края, пропущен аналог связки головки бедренной кости (вид с латеральной стороны).   В данном случае смоделировано крепление проксимального конца связки головки бедренной кости, ligamentum capitis femoris , в середине вырезки вертлужной впадины, incisur...

УЧЕНИЕ О LCF

уЧЕНИЕ   О   ligamentum capitis femoris:   Инструмент познания и инноваций. Определение: Совокупность теоретических положений о всех аспектах знаний об анатомическом элементе  ligamentum   capitis   femoris   ( LCF ).   1. Структура Учения о LCF 2. Практическое приложение Учения о LCF: 2.1. Диагностика 2.1. Певенция   2.3. Прогноз 2.4. Патология 2.5. Ветеринария   2.6. Профессии     2.7. Изделия     2.8. Хирургия   3. Теория Механики LCF    4. Фундамент Учения о LCF 5. Лестница в прошлое или История Учения о LCF 6. Предельная глубина исследований   7. Приложения 7.1. Допустимые синонимы названия     Структура  УЧЕНИя    О   ligamentum  capitis  femoris .       З     Е     М                   Л                       Л   ...