К основному контенту

НОВЫЕ ПУБЛИКАЦИИ

  Н ОВЫЕ ПУБЛИКАЦИИ РЕСУРСА:      06 .04 .2025 2025АрхиповСВ. ПОЧЕМУ ВОССТАНОВЛЕНИЕ ВЕРТЛУЖНОЙ ГУБЫ МОЖЕТ БЫТЬ НЕЭФФЕКТИВНО? Статья. Grok. Рецензия на статью «Почему восстановление вертлужной губы может быть неэффективно?»   Рецензия на статью. ChatGPT. Рецензия на статью «Почему восстановление вертлужной губы может быть неэффективно?»  Рецензия на статью. 02 .04 .2025 РАЗОБЩАЮЩИЙ ЭФФЕКТ ПРИ УДЛИНЕННОЙ LCF.   Публикация в группе  facebook.  01 .04 .2025 Публикации о LCF в 2025 году (Март)   Статьи и книги с упоминанием LCF опубликованные в марте 2025 года. 31 .03 .2025 Создан раздел  ИНТЕРНЕТ ЖУРНАЛ  для депонирования выпусков.  Интернет-журнал "О КРУГЛОЙ СВЯЗКЕ БЕДРА", март 2025. Второй  выпуск.  30 .03 .2025 2025АрхиповСВ. ДЕТИ ЧЕЛОВЕЧЕСКИЕ :  истоки библейских преданий в обозрении врача (2025). Эссе датирует написание книги Бытие, изображенные в ней события и упоминание LCF, а также опровергает авт...

Рассуждение о морфомеханике. 1.2.20 Ткани зуба

  

1.2.20 Ткани зуба

Рассмотренная выше костная ткань, хорошо приспособленная к восприятию высоких нагрузок, все-таки не является самой прочной в организме человека. Известны, по крайней мере, еще три вида тканей сравнимых по прочности с костью, это ткани образующие зубы – эмаль, дентин и цемент.

Высокие прочностные характеристики тканей зуба обеспечивают возможность механической обработки пищи, которая порой сама достаточно тверда. Нагрузка на зубы в акте жевания составляет 100-1500 Н, в зависимости от области расположения зуба (Дудель Й. и соавт., 1996). У животных высокая прочность зубов позволяет им не только обрабатывать грубые корма, но являться орудиями нападения и защиты.

Размеры зубов и число их корней соотносятся с величинами приходящихся на них нагрузок, крупнее - коренные, имеющие до трех корней, мельче – резцы, с одним корнем. С уровнем нагрузок коррелирует и толщина эмали, которая больше на жевательной поверхности зуба достигая 3.5 мм (Бобровский Е.В., Леус П.А., 1979). Средняя плотность зуба в области венца составляет 2.38 (Березовский В.А., Колотилов Н.Н., 1990). Это является наивысшим показателем плотности для тканей человека.

Зубы являются производными эктодермы и мезенхимы. Зачаток зуба создается после концентрации эпителиальных клеток и погружении их внутрь челюстей* (Бажанов Н.Н., 1970). Эмаль формируется из эмалевого органа, образующегося из многослойного эпителия выстилки полости рта, дентин, цемент, а также пульпа зуба из мезенхимы (Быков В.Л., 1996). Впоследствии имевшиеся клетки исчезают из поверхностных слоев там, где развивается эмаль. В цементе и дентине клетки сохраняются. Дентинобласты или одонтобласты являются клетками мезенхимального происхождения (Сапин М.Р., Билич М.Р., 1996).

Эмаль состоит из эмалевых призм (Рис.1.28), проходящих сквозь всю толщину данной ткани. Призмы собраны в пучки, расположенные радиально, под прямым углом к эмалево-дентинной границе. Соединение призм между собой обеспечивается межпризматическим веществом. В химическом составе эмали превалируют неорганические вещества 96-97%, из которых более 80% фосфорнокислого кальция. Органических веществ 3-4%, это не только межпризматическое вещество, но и фибриллы пронизывающие непосредственно саму призму. Фибриллы образуют трехмерную сеть, а меж ее петлями располагаются кристаллы минеральных солей (Федоров Ю.А., 1970).

Эмалевые призмы – главная структурно-функциональная единица эмали. Призмы проходят радиально, пучками через всю ее толщу (преимущественно перпендикулярно дентиноэмалевой границе). Они несколько изогнуты в виде буквы «S» и состоят из кристаллов гидроксиапатита восьмикальциевого фосфата. Кристаллы в эмали крупнее, чем в дентине, их толщина 25-400 нм, ширина 40-90нм, длина 100-1000 нм. Форма призм на поперечном сечении – овальная, полигональная или в виде замочной скважины, а диаметр 3-5 мкм. Диметр призм увеличивается от дентиноэмалевой границы к поверхности эмали приблизительно в 2 раза. Призмы отделяются межпризматическим веществом идентичным веществу эмалевых призм, однако кристаллы гидроксиапатита в нем ориентированы приблизительно под прямым углом к кристаллам, образующим призму. Степень его минерализации ниже, чем призмы, оно также имеет меньшую прочность. Каждая призма снабжена оболочкой с содержанием белков больше, чем в самой призме (Быков В.Л., 1996). Эмалевую призму вырабатывает одна клетка (Хэм А., Кормак Д., 1983).

По данным М.Р.Сапина, Г.Л.Билич (1996) эмалевые призмы имеют толщину 3–5 мкм и состоят из овальных тубулярных субъединиц длиной 0.1 мкм и диаметром 3–6 нм, расположенных по оси призмы имеющей S-образное направление. В эмали обнаруживается белок коллагенового типа и мукополисахариды (Бобровский Е.В., Леус П.А., 1979). По всей видимости, именно коллаген является волокнистой матрицей эмали, а гликозаминогликаны скрепляют призмы и соединяют волокна и кристаллы.

Эмаль самая твердая из всех тканей организма, и соответствует 7° по шкале твердости* (Пеккер Р.Я., 1971). Твердость эмали увеличивается в процессе онтогенеза (Федоров Ю.А., 1970). В численном выражении твердость эмали 3776´106 Нм-2, а предел прочности 3432–4511´104 Нм-2 (Березовский В.А., Колотилов Н.Н., 1990).

Дентин часто рассматривают как специализированную костную ткань, которая по твердости в 4-5 раз мягче эмали, но тверже и прочнее чем цемент и кость. В дентине обнаруживается коллаген первого типа, гидроксиапатит, клетки одонтобласты Волокна направлены радиально и сам дентин пронизан каналами – дентинными трубочками (Быков В.Л., 1996). В дентине обнаружен остеонектин (Бойчук Н.В. и соавт., 1997). Это его еще больше сближает с костной тканью. Более того, дентин можно рассматривать как особый вид незрелой костной ткани. В той и другой ткани присутствуют коллагеновые волокна из коллагена первого типа, кристаллы гидроксиапатита, остеонектин, а также имеются микроканалы.

Дентин - ткань менее прочная, чем эмаль. В ней, так же как и в эмали, отсутствуют клетки. По данным С.М.Ремезова (1965) твердость дентина в 5-6 раз меньше, чем у эмали и равна 58.9 кг/мм2 и соответствует 5-6° по шкале твердости** (Пеккер Р.Я., 1971). В численном выражении твердость дентина 726´106 Нм-2, а предел прочности составляет 1961´104 Нм-2 (Березовский В.А., Колотилов Н.Н., 1990).

Остов дентина образуют коллагеновые волокна, взаимодействующие с кристаллами минеральных солей расположенные между ними (Бажанов Н.Н., 1970). Процент органических веществ в дентине составляет более 26%, что меньше чем в эмали (Пеккер Р.Я., 1971). По данным М.Р.Сапина, Г.Л.Билич (1996) коллагеновые волокна в дентине расположены радиально в наружном слое, и тангенциально во внутреннем.

Цемент третья твердая ткань зуба. По своему строению и химическому составу данная ткань сходна с костной тканью. Ее образуют коллагеновые волокна, соли кальция, бесструктурное склеивающее вещество и клетки – цементоциты, соединяющиеся друг с другом отростками (Гаврилов Е.И., 1969). Содержание органических веществ в цементе составляет почти 33% (Пеккер Р.Я., 1971).

Цемент напоминает по своему строению костную ткань, прежде всего тем, что образован обызвествленными пластинками, расположенными нерегулярно. Именно в цемент внедряются коллагеновые волокна, скрепляющие зуб с периодонтом (Сапин М.Р., Билич Г.Л., 1996). Отличием цемента от кости является, отсутствие сосудов, наличие специализированных клеток – цеметоцитов, а также то, что он не подвержен постоянной перестройке (Быков В.Л., 1996). Думается отсутствие перестройки в цементе можно объяснить тем, что величина и направление нагрузки на зубы примерно постоянны в течение жизни. 



* С нашей точки зрения, это происходит в результате давления челюстей друг на друга.

** Шкала твердости по Моосу: 1-тальк, 2-гипс, 3-кальцит, 4-флюорит, 5-апатит, 6-ортоклаз, 7-кварц, 8-топаз, 9-корунд, 10-алмаз.


                                                                     

Автор:

Архипов С.В. – С.В. Архипов-Балтийский является псевдонимом, который использовался до начала 2006 года с целью более точной дифференцировки на научном поле.

Цитирование:

Архипов-Балтийский СВ. Рассуждение о морфомеханике. Норма. В 2 т. Т. 1. Гл. 1-4. - Испр. и доп. изд. Калининград, 2004. [aleph.rsl.ru]

Архипов-Балтийский СВ. Рассуждение о морфомеханике. Норма. В 2 т. Т. 2. Гл. 5-6. - Испр. и доп. изд. Калининград, 2004. [aleph.rsl.ru]

Примечания:

Первая крупная публикация автора, посвященная морфомеханике живых систем, биомеханике пояса нижних конечностей и связки головки бедра, ligamentum capitis femoris (LCF).

Ключевые слова

ligamentum capitis femorisligamentum teres, связка головки бедра, анатомия, морфомеханика, биомеханика

СОДЕРЖАНИЕ РЕСУРСА

Биомеханика и морфомеханика

Популярные статьи

2025АрхиповСВ. ПОЧЕМУ ВОССТАНОВЛЕНИЕ ВЕРТЛУЖНОЙ ГУБЫ МОЖЕТ БЫТЬ НЕЭФФЕКТИВНО?

Тематический Интернет-журнал О круглой связке бедра Апрель, 2025 Почему восстановление вертлужной губы может быть НЕЭФФЕКТИВНО?: заметка о таинственной «темной материи» в тазобедренном суставе Архипов С.В., независимый исследователь, Йоенсуу, Финляндия Аннотация Восстановление и реконструкция вертлужной губы не предотвращает остеоартрит и нестабильность тазобедренного сустава при ходьбе в случае удлинения ligamentum capitis femoris . Заключение сделано на основании математических расчетов и анализа результатов экспериментов на механической модели. Ключевые слова: артроскопия, тазобедренный сустав, вертлужная губа, ligamentum capitis femoris, ligamentum teres, связка головки бедренной кости, реконструкция, восстановление Введение Почти 80% первичных артроскопий тазобедренного сустава включает восстановление вертлужной губы (2019 WestermannRW _ RosneckJT ). Реконструкция – наиболее распространенная процедура для устранения патологии вертлужной губы и при ревизионной артроскопии (2...

Публикации о LCF в 2025 году (Март)

  Публикации о LCF в 2025 году (Март):  Статьи и книги с упоминанием LCF опубликованные в марте 2025 года. Matsushita, Y., Sugiyama, H., Hayama, T., Sato, R., & Saito, M. (2025). Long-term Outcome of Pediatric Arthroscopic Surgery for Avulsion Fracture of the Ligamentum Teres: A Case Report.  JBJS Case Connector ,  15 (1), e25.   [i]      journals.lww.com   Arkhipov, S. V. (2025).  Inferior Portal for Hip Arthroscopy: A Pilot Experimental Study. Pt. 2. Inferior Portal Prototypes.  About Round Ligament of Femur . February   26, 2025.   [ii]    researchgate . net   Pfirrmann, C. W., & Kim, Y. J. (2025). Advanced Imaging. In  Surgical Hip Dislocation: A Comprehensive Approach to Modern Hip Surgery  (pp. 29-42). Cham: Springer Nature Switzerland.   [iii]      link.springer.com   Singh, R., & Yadav, N. (2025). Morphometry and Morphology of the Fovea Ca...

Моделирование взаимодействия LCF нормальной длины и отводящей группы мышц

  Моделирование взаимодействия LCF нормальной длины и отводящей группы мышц   С целью дальнейшего уточнения значения отводящей группы мышц для биомеханики тазобедренного сустава, articulatio coxae , мы изучили ее взаимодействие со связкой головки бедренной кости, ligamentum capitis femoris , нормальной длины. Аналог связки головки бедренной кости одним концом соединялся с моделью вертлужной впадины, будучи пропущенным через отверстие, расположенное на границы ямки и канавки фасонной выточки модели вертлужной впадины (Рис. 1). Рис. 1. Тазовая часть механической модели тазобедренного сустава птицы, через отверстие в фасонной выточке, лежащее на границе ямки (круглого углубления) и канавки (продольного углубления) пропущен аналог связки головки бедренной кости; вид с латеральной стороны.     Другой конец аналога связки головки бедренной кости соединялся с бедренной частью модели после размещения тазовой части модели на головке бедренной части модели. Методика соеди...

Механическая модель с аналогом связки головки бедренной кости

  Механическая модель с аналогом связки головки бедренной кости   Для уточнения механической функции связки головки бедренной кости , ligamentum capitis femoris , применена ранее описанная трехмерная механическая модельтазобедренного сустава без аналогов наружных связок. В качестве аналога связки головки бедренной кости , ligamentum capitis femoris , использован плетеный капроновый шнур диаметром 5 мм. Одним концом он соединялся с моделью вертлужной впадины тазовой части модели, будучи пропущенным, через одно из отверстий в ее фасонной выточке. Изначально мы пропустили аналог связки головки бедренной кости через отверстие, выполненное в центре фасонной выточки модели вертлужной впадины. Это, по нашей мысли, моделировало прикрепление связки к дну ямки вертлужной впадины (Рис. 1).   Рис. 1. Тазовая часть механической модели тазобедренного сустава, через центральное отверстие в фасонной выточке пропущен аналог связки головки бедренной кости (вид с латеральной сторо...

Моделирование взаимодействия удлиненной LCF и отводящей группы мышц

  Моделирование взаимодействия удлиненной LCF и отводящей группы мышц В настоящей серии экспериментов на трехмерной механической модели тазобедренного сустава, мы еще больше уд линили часть аналога связки головки бедренной кости, которая располагалась внутри шарнира – аналоге вертлужного канала. Для этого аналог связки головки бедренной кости одним концом он соединялся с моделью вертлужной впадины, будучи пропущенным, через отверстие в канавке фасонной выточке. При этом область крепления располагалась на расстоянии 25 мм от наружного края модели вертлужной впадины (Рис. 1). Рис. 1. Тазовая часть механической модели тазобедренного сустава через отверстие в канавке фасонной выточки, лежащим на расстоянии 25 мм от наружного края, пропущен аналог связки головки бедренной кости (вид с латеральной стороны).   В данном случае смоделировано крепление проксимального конца связки головки бедренной кости, ligamentum capitis femoris , в середине вырезки вертлужной впадины, incisur...