К основному контенту

НОВЫЕ ПУБЛИКАЦИИ

  Н ОВЫЕ ПУБЛИКАЦИИ РЕСУРСА:      01 .04 .2025 Публикации о LCF в 2025 году (Март)   Статьи и книги с упоминанием LCF опубликованные в марте 2025 года. 31 .03 .2025 Создан раздел  ИНТЕРНЕТ ЖУРНАЛ  для депонирования выпусков.  Интернет-журнал "О КРУГЛОЙ СВЯЗКЕ БЕДРА", март 2025. Второй  выпуск.  30 .03 .2025 2025АрхиповСВ. ДЕТИ ЧЕЛОВЕЧЕСКИЕ :  истоки библейских преданий в обозрении врача (2025). Эссе датирует написание книги Бытие, изображенные в ней события и упоминание LCF, а также опровергает авторство Ветхозаветного Моисея. 29 .03 .2025   С. Архипов против F . Pauwels ☺   Публикация в группе  facebook.  28 .03 .2025 Биомеханика тазобедренного сустава без LCF .  Публикация в группе  facebook.  27 .03 .2025 Наружные связки и LCF .  Публикация в группе  facebook.  26 .03 .2025 модель тазобедренного сустава с аналогом lcf .  Публикация в группе  facebook.  25...

Рассуждение о морфомеханике. 6.1.14 Хрящевая ткань и механический фактор

 

6.1.14 Хрящевая ткань и механический фактор

Связь между механическим фактором, строением и развитием хрящевых структур известна. Здесь мы приведем ряд мнений и наблюдений, подтверждающих указанную взаимосвязь.

Согласно F.Pauwels (1980) стимулом к развитию хрящевой ткани является гидростатическое давление, присутствующее в ткани и обусловленное внешним воздействием.

Архитектоника хряща аналогична таковой кости и соответствует силовым линиям растяжения, сжатия, перегиба, а также скручивания, отмечал С.А.Рейнберг (1964).

«Рост и дифференцировка эпифизарного и суставного хряща также происходит в полном соответствии с функциональной нагрузкой, развитием скелета и организма в целом (Зедгенидзе Г.А. и соавт., 1958).

Мениски – волокнистохрящевые образования, по мнению М.Н.Павловой, Б.Н.Куманина (1983), возникают в результате функциональной нагрузки.

В процессе онтогенеза «…изменение действия статико-динамических сил напряжения в хрящевой модели ведет к изменению структуры хряща в наиболее нагружаемых участках, а именно в диафизарной части», где отмечается отложение костной ткани (Корж А.А. и соавт., 1972).

Естественная последовательность событий у всех хрящей в онтогенезе скелета есть пролиферация, созревание, гипертрофия и окостенение. Применение неустойчивых стригущих напряжений или энергия напряжения в хряще ускорят этот процесс, в то время как неустойчивые сжимающие гидростатические напряжения будут останавливать или задерживать этот процесс. Существование суставного хряща в диартрозах у взрослых индивидуумов - результат неспособности завершить энхондральное окостенение при неустойчиво высокой величине гидростатического давления. Дегенерация и окостенение суставного хряща могут таким образом рассматриваться как нормальный процесс, остановленный или резко замедленный, в функционирующем суставе. Эти экспериментальные данные позволяют предлагать, что сжимающая статическая погрузка уменьшает синтез протеогликанов хряща, в то время как циклическое сжатие его увеличивает (Carter D.R., Wong M., 1990).

Отмечено, что при переменных нагрузках, воздействующих на хрящевую ткань, возрастает продуцирование протеогликанов хондроцитами. «Механическое сжатие является одним из факторов, способствующих приобретению малодифференцированными (мезенхимальными) клетками фенотипа хондроцитов» (Шапошников Ю.Г. и соавт., 1994).

По мнению М.М.Дитерихса (1937) «…форма суставов, полученная филогенетически во внутриутробной жизни, в дальнейшем существовании является лишь функциональным результатом действия внутренних и внешних условий жизни организма», при этом автор подразумевает, в том числе и действие механического фактора на суставы.

При увеличении контактного давления на участок суставного хряща наступает его дезорганизация (Корж А.А. и соавт., 1987). Это подтверждено и экспериментами. В частности, показано, что увеличение нагрузки на эпифизарной хрящ приводит не только к осевой деформации кости, но и появлению неравномерности высоты эпифизарного хряща. Микроскопически в хряще отмечено смятие основного вещества, деформация и растрескивание колонок хондроцитов, появление микрощелей, нарушение энхондрального окостенения и хондрогенеза. Длительная функциональная перегрузка вызывает дистрофию и деструкцию эпифизарного хряща (Бруско А.Т., 1983, 1993).

О.А.Ушакова, Н.М.Голикова (1982) рассматривают дегенеративные изменения в суставах в ответ на механическую нагрузку как одну из биологических реакций. Замечено, что суставные хрящи раньше всего разрушаются в местах максимальной нагрузки «…, например, в верхнелатеральном отделе тазобедренного сустава» (Коссинская Н.С., 1961).

Вместе с тем известно, что и «на бездеятельном суставе толщина хряща уменьшается». Иммобилизация приводит к узурации суставного хряща, очагам его некроза, оссификации суставной губы и суставной сумки. Йорес обнаружил, что при локализованном давлении, постоянном и длительном развиваются патологические изменения в хряще и его узурация (Николаев Л.П., 1947).

При иммобилизации наблюдается атрофия хряща, сращение его с фиброзно-жировой тканью, мацерация в зонах контакта хрящевых поверхностей, дезорганизация клеточного и фибриллярного строения и слабость связочного аппарата, особенно мест прикрепления связок из-за остеокластической резорбции кости. Отмечено снижение прочностных характеристик костно-суставного комплекса, уменьшение массы коллагеновых волокон на 10% за 12 недель, уменьшение протеогликанов и гиалуроновой кислоты (Akeson W.H. et al., 1987).

Разгрузка суставного хряща иммобилизацией глубоко изменяет его биологические свойства. Снижение нагрузки ведет к атрофии хряща, уменьшению в нем протеогликанов, особенно в поверхностной зоне. После иммобилизации, потери протеогликанов могут восстанавливаться в зависимости от участка поверхности хряща. Наибольшее истощение наблюдается в местах, где контакт между антагонистическими поверхностями хряща отсутствует, в то время как в центральной части, которые сохраняют контакт, содержание протеогликанов близко к норме. Поэтому, даже контакт между смежными суставными поверхностями достаточен, чтобы поддержать нормальную матрицу хряща. Содержание же коллагена суставного хряща остается практически неизменным и после периода иммобилизации. Однако отражается на обмене коллагена и его структуре. Описанные выше изменения в суставном хряще после иммобилизации ведут к снижению твердости ткани. Это, по всей видимости, и делает матрицу хрящевой ткани уязвимой к повреждениям вследствие действия механического напряжения. Замечено, что, вызванные иммобилизацией изменения суставного хряща в значительной степени обратимы, хотя в настоящее время не полностью ясно, восстанавливается ли хрящ полностью во всех участках. Эксперименты на собаках показали, что, по крайней мере, у молодых особей, основная реакция суставного хряща, на увеличение нагрузки является анаболической, но чрезмерная нагрузка может активизировать катаболические процессы в хрящевой ткани, ухудшая биологические свойства хряща (Helminen H.J. et al., 1992).

Как и в отношении кости, механический фактор играет значительную роль в функционировании хрящевой ткани. Действие механического фактора, как явствует из приведенных мнений двоякое. С одной стороны, он участвует в формировании хрящевых структур, с другой, действие его приводит к их разрушению. Казалось бы, существенное снижение нагрузки на хрящ сложно объяснимым образом приводит к его деструкции, так же как и ее увеличение.

F.Pauwels (1980) и несколько более ранних авторов предположили, что дифференцирование клеток для синтеза различных видов соединительной ткани (кость, хрящ, сухожилие, и т.д.) связано с ингибированием различного вида механического напряжения (растяжение, сжатие, сдвиг). Эта концепция также включила изменения в хондроцитах, приводящих к кальцинозу хряща. Carter (1987), Carter et al., (1987) развили эту концепцию в теорию кальцификации хряща (Carter-Wongtheory) и исследовали ее методом конечных элементов. Основная предпосылка их теории в том, что реакции хондроцитов на напряжения сдвига ведут к кальцинозу смежного хряща, в то время как сжимающие напряжения сохраняют хрящ в некальцинированном состоянии. Согласно этой теории, развитие кости от хрящевой модели «наследственно не запрограммировано», но в значительной степени обусловлено влиянием эффектов механических напряжений на клетки. Сначала оссифицируется область в центре диафиза, что соответствует первичной точке окостенения в развивающейся зародышевой кости. Из-за появления напряжений сдвига в хряще рядом с кальцинированной областью, оссификация распространяется к концам диафиза. Напряжения сдвига увеличиваются на концах кости, которые также начинают отвердевать, что соответствует вторичным центрам окостенения в эпифизах. Поскольку точки окостенения продолжают расти, области некальцинированного хряща сжимаются к четырем зонам, соответствуя суставному хрящу на объединенных поверхностях и пластинах роста в области каждого конца кости. Известен закон Heuter-Volkmann согласно которому рост кости происходит в области эпифизарной пластинки быстрее при действии растяжения и замедляется, когда величина нормального сжатия превышена. По теории сформулированной Frost (1990) высокие напряжения растяжения или сжатии ускоряют рост, до некоторой точки. Если пиковое сжимающее напряжение становится слишком высоким, рост замедляется. При превышении пикового напряжения растяжения эпифизарная хрящевая пластинка будет разорвана (Martin R.B. et al., 1998).

Здесь следует отметить, что распространенный сейчас метод конечных элементов, применяющийся для изучения напряжений костной ткани достаточно приблизительный, а результаты, полученные с его помощью, нелегко проверить (Currey J., 1984).


                                                                     

Автор:

Архипов С.В. – С.В. Архипов-Балтийский является псевдонимом, который использовался до начала 2006 года с целью более точной дифференцировки на научном поле.

Цитирование:

Архипов-Балтийский СВ. Рассуждение о морфомеханике. Норма. В 2 т. Т. 1. Гл. 1-4. - Испр. и доп. изд. Калининград, 2004. [aleph.rsl.ru]

Архипов-Балтийский СВ. Рассуждение о морфомеханике. Норма. В 2 т. Т. 2. Гл. 5-6. - Испр. и доп. изд. Калининград, 2004. [aleph.rsl.ru]

Примечания:

Первая крупная публикация автора, посвященная морфомеханике живых систем, биомеханике пояса нижних конечностей и связки головки бедра, ligamentum capitis femoris (LCF).

Ключевые слова

ligamentum capitis femorisligamentum teres, связка головки бедра, анатомия, морфомеханика, биомеханика

СОДЕРЖАНИЕ РЕСУРСА

Биомеханика и морфомеханика

Популярные статьи

Публикации о LCF в 2025 году (Март)

  Публикации о LCF в 2025 году (Март):  Статьи и книги с упоминанием LCF опубликованные в марте 2025 года. Matsushita, Y., Sugiyama, H., Hayama, T., Sato, R., & Saito, M. (2025). Long-term Outcome of Pediatric Arthroscopic Surgery for Avulsion Fracture of the Ligamentum Teres: A Case Report.  JBJS Case Connector ,  15 (1), e25.   [i]      journals.lww.com   Arkhipov, S. V. (2025).  Inferior Portal for Hip Arthroscopy: A Pilot Experimental Study. Pt. 2. Inferior Portal Prototypes.  About Round Ligament of Femur . February   26, 2025.   [ii]    researchgate . net   Pfirrmann, C. W., & Kim, Y. J. (2025). Advanced Imaging. In  Surgical Hip Dislocation: A Comprehensive Approach to Modern Hip Surgery  (pp. 29-42). Cham: Springer Nature Switzerland.   [iii]      link.springer.com   Singh, R., & Yadav, N. (2025). Morphometry and Morphology of the Fovea Ca...

Моделирование взаимодействия LCF нормальной длины и отводящей группы мышц

  Моделирование взаимодействия LCF нормальной длины и отводящей группы мышц   С целью дальнейшего уточнения значения отводящей группы мышц для биомеханики тазобедренного сустава, articulatio coxae , мы изучили ее взаимодействие со связкой головки бедренной кости, ligamentum capitis femoris , нормальной длины. Аналог связки головки бедренной кости одним концом соединялся с моделью вертлужной впадины, будучи пропущенным через отверстие, расположенное на границы ямки и канавки фасонной выточки модели вертлужной впадины (Рис. 1). Рис. 1. Тазовая часть механической модели тазобедренного сустава птицы, через отверстие в фасонной выточке, лежащее на границе ямки (круглого углубления) и канавки (продольного углубления) пропущен аналог связки головки бедренной кости; вид с латеральной стороны.     Другой конец аналога связки головки бедренной кости соединялся с бедренной частью модели после размещения тазовой части модели на головке бедренной части модели. Методика соеди...

Механическая модель с аналогом связки головки бедренной кости

  Механическая модель с аналогом связки головки бедренной кости   Для уточнения механической функции связки головки бедренной кости , ligamentum capitis femoris , применена ранее описанная трехмерная механическая модельтазобедренного сустава без аналогов наружных связок. В качестве аналога связки головки бедренной кости , ligamentum capitis femoris , использован плетеный капроновый шнур диаметром 5 мм. Одним концом он соединялся с моделью вертлужной впадины тазовой части модели, будучи пропущенным, через одно из отверстий в ее фасонной выточке. Изначально мы пропустили аналог связки головки бедренной кости через отверстие, выполненное в центре фасонной выточки модели вертлужной впадины. Это, по нашей мысли, моделировало прикрепление связки к дну ямки вертлужной впадины (Рис. 1).   Рис. 1. Тазовая часть механической модели тазобедренного сустава, через центральное отверстие в фасонной выточке пропущен аналог связки головки бедренной кости (вид с латеральной сторо...

Моделирование взаимодействия удлиненной LCF и отводящей группы мышц

  Моделирование взаимодействия удлиненной LCF и отводящей группы мышц В настоящей серии экспериментов на трехмерной механической модели тазобедренного сустава, мы еще больше уд линили часть аналога связки головки бедренной кости, которая располагалась внутри шарнира – аналоге вертлужного канала. Для этого аналог связки головки бедренной кости одним концом он соединялся с моделью вертлужной впадины, будучи пропущенным, через отверстие в канавке фасонной выточке. При этом область крепления располагалась на расстоянии 25 мм от наружного края модели вертлужной впадины (Рис. 1). Рис. 1. Тазовая часть механической модели тазобедренного сустава через отверстие в канавке фасонной выточки, лежащим на расстоянии 25 мм от наружного края, пропущен аналог связки головки бедренной кости (вид с латеральной стороны).   В данном случае смоделировано крепление проксимального конца связки головки бедренной кости, ligamentum capitis femoris , в середине вырезки вертлужной впадины, incisur...

УЧЕНИЕ О LCF

уЧЕНИЕ   О   ligamentum capitis femoris:   Инструмент познания и инноваций. Определение: Совокупность теоретических положений о всех аспектах знаний об анатомическом элементе  ligamentum   capitis   femoris   ( LCF ).   1. Структура Учения о LCF 2. Практическое приложение Учения о LCF: 2.1. Диагностика 2.1. Певенция   2.3. Прогноз 2.4. Патология 2.5. Ветеринария   2.6. Профессии     2.7. Изделия     2.8. Хирургия   3. Теория Механики LCF    4. Фундамент Учения о LCF 5. Лестница в прошлое или История Учения о LCF 6. Предельная глубина исследований   7. Приложения 7.1. Допустимые синонимы названия     Структура  УЧЕНИя    О   ligamentum  capitis  femoris .       З     Е     М                   Л                       Л   ...