К основному контенту

НОВЫЕ ПУБЛИКАЦИИ

  Н ОВЫЕ ПУБЛИКАЦИИ РЕСУРСА:      01 .04 .2025 Публикации о LCF в 2025 году (Март)   Статьи и книги с упоминанием LCF опубликованные в марте 2025 года. 31 .03 .2025 Создан раздел  ИНТЕРНЕТ ЖУРНАЛ  для депонирования выпусков.  Интернет-журнал "О КРУГЛОЙ СВЯЗКЕ БЕДРА", март 2025. Второй  выпуск.  30 .03 .2025 2025АрхиповСВ. ДЕТИ ЧЕЛОВЕЧЕСКИЕ :  истоки библейских преданий в обозрении врача (2025). Эссе датирует написание книги Бытие, изображенные в ней события и упоминание LCF, а также опровергает авторство Ветхозаветного Моисея. 29 .03 .2025   С. Архипов против F . Pauwels ☺   Публикация в группе  facebook.  28 .03 .2025 Биомеханика тазобедренного сустава без LCF .  Публикация в группе  facebook.  27 .03 .2025 Наружные связки и LCF .  Публикация в группе  facebook.  26 .03 .2025 модель тазобедренного сустава с аналогом lcf .  Публикация в группе  facebook.  25...

Рассуждение о морфомеханике. 6.2.2 Напряжения действующие в живых системах

 

6.2.2 Напряжения действующие в живых системах

Не только внешняя форма органа, но и его внутреннее строение находится в определенном соответствии с воздействующей нагрузкой. Вследствие этого логично предположить, что строение живой системы зависит от действующих в ней напряжений – интенсивности внутренних сил. Именно к ним происходит приспособление, выражающееся в трансформации органов и тканей. Причем, живые системы адаптируются как к величинам внутренних сил, так и к их векторам. Говорить о том, что трансформация происходит в соответствии с какими-то компонентами действующих напряжений не правомерно. Ткани в каждой своей точке в равной степени адаптированы и к нормальным, и касательным напряжениям.

Обращает на себя внимание тот факт, что все ткани, образующие тело человека, точно отвечают механическим требованиям, которые к ним предъявляют условия их функционирования. Поверхностный слой кожи – эпидермис приспособлен к давлению на него, изгибам, и к касательным силам. Форма клеток, соединение их между собой, постоянно протекающая регенерация и наличие на поверхности видоизмененных погибших клеточных элементов обуславливает специфические механические свойства эпидермиса. В областях, где нагрузка на поверхностный слой кожи особенно велика, его толщина увеличивается, появляется избыточное ороговение, что также является приспособительным явлением.

Соединение эпидермиса и дермы в полной мере адаптировано к касательным напряжениям, возникающим при попытке сдвига одного слоя кожи относительно другого. Сама же собственно кожа способна хорошо противостоять растягивающим нагрузкам, порождающим потоки внутренних сил параллельные ее слою. В соответствии с направлениями векторов напряжений, действующих в собственно дерме ориентированы ее волокнистые элементы. Участки кожи, испытывающие не только растягивающую нагрузку, но и сжатие утолщаются, тем самым, увеличивая ее локальную прочность.

Нечто подобное можно отметить и в отношении фасций. Расположение имеющихся в них волокон их общая толщина, находятся во взаимосвязи с потоками внутренних сил, возникающих в них. Сокращение подлежащей мышцы порождает в покрывающей ее фасции напряжения ориентирующие волокнистые элементы. Чем более мощную мышцу покрывает фасция, тем она толще, что позволяет достичь необходимой прочности фасциальному футляру.

Сухожилия и связки – яркий пример приспособления элементов живой системы к динамическим растягивающим и изгибающим нагрузкам. Последние обуславливают четко определенные по направлению потоки внутренних сил. Параллельно вектору растяжения в тканях располагаются упрочняющие их волокна. Чем больше величина действующих напряжений, тем более плотно упакованы волокна, в их расположении отмечается более выраженный порядок, больше поперечное сечение образованной ими структуры. Особенность волокнистого строения заключается еще и в том, что подобный элемент способен длительно испытывать циклическую изгибающую нагрузку. Свойства волокон и характер их соединения с возможностью ограниченного смещения друг относительно друга, предопределяют адаптацию к напряжениям, возникающим при изгибе.

В поперечнополосатой мышце назначение и расположение волокон также соответствует направлениям потоков внутренних сил, возникающих при сокращениях.

Замена компоненты, связывающей волокна на более вязкую, изменяет общие механические свойства ткани. Это можно наблюдать на примере волокнистых хрящей. Их волокна, окруженные основным веществом не только способны противодействовать растяжению, изгибу и кручению, но и сжатию. В зависимости от направления векторов действующих напряжений в волокнистых хрящах возникают группы волокон сонаправленные им.

Сегментирование хряща увеличивает его способность противостоять силам сжатия. Призмы гиалиновых оболочек ориентированы в соответствии с нормальными напряжениями, возникающими при их сжатии. Это же направление имеет и основная масса имеющихся в гиалиновом хряще волокон. Однако на его поверхности ориентация волокон изменяется, в связи с тем, что в данной области превалируют касательные напряжения, возникающие при трении суставных поверхностей.

Не только характер нагрузки, но и величина возникающей под ее действием деформации отражается на строении органов. Так при амплитуде сдвига, превышающей пределы эластичности тканей возникают пластинчатые полости, в которых появляется особый, жидкий вид соединительной ткани – синовия. Физические свойства и нерегулярное строение синовии позволяют ей многократно деформироваться, подвергаться значительному по величине сжатию, при этом, не теряя своих биологических свойств. Синовия — это результат своего рода метаплазии - адаптации соединительной ткани к интенсивным напряжениям, значительным по амплитуде деформациям.

Ярким примером соответствия строения органа действующим напряжениям являются кости. Внешняя сила, порой даже незначительная по величине, но действующая длительно способна изменить внешнюю форму кости. Она зависит от направления локального потока внутренних сил. При обращении вектора действующего напряжения к поверхности кости возникает возвышение. Направленность его от поверхности, внутрь кости, приводит к образованию углубления. Кроме этого, наличие на определенном участке поверхности кости концентрации напряжений, влечет за собой утолщение компактного слоя. На поверхности кости концентрация напряжений при сжатии приводит к утолщению компактного слоя, а при растяжении к его разрыхлению и разрыву. Внутри кости следствием концентрации напряжений является появление на рентгенограммах зон просветления, а затем кист. По мере увеличения нагрузки происходит увеличение размеров кисты, склероз ее стенки. Внутреннее устройство кости, несомненно, находится в зависимости от потоков внутренних сил. В соответствии с векторами действующих напряжений, параллельно им, в губчатой кости выстраиваются костные трабекулы, а в компактной кости остеоны. Обращает на себя внимание то, что принципиальной разницы действия внутренних сил, возникающих при растяжении и сжатии кости не наблюдается. В том, и в другом случае костные пластинки ориентируются параллельно векторам действующих напряжений, подобно железным опилкам в магнитном поле.

Зависимость между напряжениями, существующими в органах и их строением, отмечается не только в элементах ОДС. Действующие напряжения организуют и строение подкожной жировой клетчатки. Ее зоны, подвергающиеся сжатию, характеризуются небольшим размером жировых долек и толстыми междольковыми перегородками. Связь стромы жировой клетчатки с окружающими органами еще больше увеличивает ее прочностные свойства. Присутствуя там, где части тела, подвергаются сжатию, жировая ткань выступает в роли демпфера, рассеивая потоки внутренних сил.

Соединительная ткань образует строму не только жировой клетчатки, но и многих полых и паренхиматозных органов. Волокна соединительной ткани, располагаясь вдоль векторов действующих напряжений, армируют органы, придают им необходимую прочность, упругость и эластичность.

Расположение волокнистых и кристаллических элементов тканей зуба строго соответствует действующим в них напряжениям. Аналогично можно отметить и в отношении строения мозга, ориентации отростков глиальных клеток, расположении оболочек. Как в наиболее прочных тканях человеческого тела, так и в тканях наименее прочных, строение зависит от ориентации потоков внутренних сил и их величин.


                                                                     

Автор:

Архипов С.В. – С.В. Архипов-Балтийский является псевдонимом, который использовался до начала 2006 года с целью более точной дифференцировки на научном поле.

Цитирование:

Архипов-Балтийский СВ. Рассуждение о морфомеханике. Норма. В 2 т. Т. 1. Гл. 1-4. - Испр. и доп. изд. Калининград, 2004. [aleph.rsl.ru]

Архипов-Балтийский СВ. Рассуждение о морфомеханике. Норма. В 2 т. Т. 2. Гл. 5-6. - Испр. и доп. изд. Калининград, 2004. [aleph.rsl.ru]

Примечания:

Первая крупная публикация автора, посвященная морфомеханике живых систем, биомеханике пояса нижних конечностей и связки головки бедра, ligamentum capitis femoris (LCF).

Ключевые слова

ligamentum capitis femorisligamentum teres, связка головки бедра, анатомия, морфомеханика, биомеханика

СОДЕРЖАНИЕ РЕСУРСА

Биомеханика и морфомеханика

Популярные статьи

Публикации о LCF в 2025 году (Март)

  Публикации о LCF в 2025 году (Март):  Статьи и книги с упоминанием LCF опубликованные в марте 2025 года. Matsushita, Y., Sugiyama, H., Hayama, T., Sato, R., & Saito, M. (2025). Long-term Outcome of Pediatric Arthroscopic Surgery for Avulsion Fracture of the Ligamentum Teres: A Case Report.  JBJS Case Connector ,  15 (1), e25.   [i]      journals.lww.com   Arkhipov, S. V. (2025).  Inferior Portal for Hip Arthroscopy: A Pilot Experimental Study. Pt. 2. Inferior Portal Prototypes.  About Round Ligament of Femur . February   26, 2025.   [ii]    researchgate . net   Pfirrmann, C. W., & Kim, Y. J. (2025). Advanced Imaging. In  Surgical Hip Dislocation: A Comprehensive Approach to Modern Hip Surgery  (pp. 29-42). Cham: Springer Nature Switzerland.   [iii]      link.springer.com   Singh, R., & Yadav, N. (2025). Morphometry and Morphology of the Fovea Ca...

Моделирование взаимодействия LCF нормальной длины и отводящей группы мышц

  Моделирование взаимодействия LCF нормальной длины и отводящей группы мышц   С целью дальнейшего уточнения значения отводящей группы мышц для биомеханики тазобедренного сустава, articulatio coxae , мы изучили ее взаимодействие со связкой головки бедренной кости, ligamentum capitis femoris , нормальной длины. Аналог связки головки бедренной кости одним концом соединялся с моделью вертлужной впадины, будучи пропущенным через отверстие, расположенное на границы ямки и канавки фасонной выточки модели вертлужной впадины (Рис. 1). Рис. 1. Тазовая часть механической модели тазобедренного сустава птицы, через отверстие в фасонной выточке, лежащее на границе ямки (круглого углубления) и канавки (продольного углубления) пропущен аналог связки головки бедренной кости; вид с латеральной стороны.     Другой конец аналога связки головки бедренной кости соединялся с бедренной частью модели после размещения тазовой части модели на головке бедренной части модели. Методика соеди...

Механическая модель с аналогом связки головки бедренной кости

  Механическая модель с аналогом связки головки бедренной кости   Для уточнения механической функции связки головки бедренной кости , ligamentum capitis femoris , применена ранее описанная трехмерная механическая модельтазобедренного сустава без аналогов наружных связок. В качестве аналога связки головки бедренной кости , ligamentum capitis femoris , использован плетеный капроновый шнур диаметром 5 мм. Одним концом он соединялся с моделью вертлужной впадины тазовой части модели, будучи пропущенным, через одно из отверстий в ее фасонной выточке. Изначально мы пропустили аналог связки головки бедренной кости через отверстие, выполненное в центре фасонной выточки модели вертлужной впадины. Это, по нашей мысли, моделировало прикрепление связки к дну ямки вертлужной впадины (Рис. 1).   Рис. 1. Тазовая часть механической модели тазобедренного сустава, через центральное отверстие в фасонной выточке пропущен аналог связки головки бедренной кости (вид с латеральной сторо...

Моделирование взаимодействия удлиненной LCF и отводящей группы мышц

  Моделирование взаимодействия удлиненной LCF и отводящей группы мышц В настоящей серии экспериментов на трехмерной механической модели тазобедренного сустава, мы еще больше уд линили часть аналога связки головки бедренной кости, которая располагалась внутри шарнира – аналоге вертлужного канала. Для этого аналог связки головки бедренной кости одним концом он соединялся с моделью вертлужной впадины, будучи пропущенным, через отверстие в канавке фасонной выточке. При этом область крепления располагалась на расстоянии 25 мм от наружного края модели вертлужной впадины (Рис. 1). Рис. 1. Тазовая часть механической модели тазобедренного сустава через отверстие в канавке фасонной выточки, лежащим на расстоянии 25 мм от наружного края, пропущен аналог связки головки бедренной кости (вид с латеральной стороны).   В данном случае смоделировано крепление проксимального конца связки головки бедренной кости, ligamentum capitis femoris , в середине вырезки вертлужной впадины, incisur...

УЧЕНИЕ О LCF

уЧЕНИЕ   О   ligamentum capitis femoris:   Инструмент познания и инноваций. Определение: Совокупность теоретических положений о всех аспектах знаний об анатомическом элементе  ligamentum   capitis   femoris   ( LCF ).   1. Структура Учения о LCF 2. Практическое приложение Учения о LCF: 2.1. Диагностика 2.1. Певенция   2.3. Прогноз 2.4. Патология 2.5. Ветеринария   2.6. Профессии     2.7. Изделия     2.8. Хирургия   3. Теория Механики LCF    4. Фундамент Учения о LCF 5. Лестница в прошлое или История Учения о LCF 6. Предельная глубина исследований   7. Приложения 7.1. Допустимые синонимы названия     Структура  УЧЕНИя    О   ligamentum  capitis  femoris .       З     Е     М                   Л                       Л   ...