К основному контенту

НОВЫЕ ПУБЛИКАЦИИ

  Н ОВЫЕ ПУБЛИКАЦИИ РЕСУРСА:      01 .04 .2025 Публикации о LCF в 2025 году (Март)   Статьи и книги с упоминанием LCF опубликованные в марте 2025 года. 31 .03 .2025 Создан раздел  ИНТЕРНЕТ ЖУРНАЛ  для депонирования выпусков.  Интернет-журнал "О КРУГЛОЙ СВЯЗКЕ БЕДРА", март 2025. Второй  выпуск.  30 .03 .2025 2025АрхиповСВ. ДЕТИ ЧЕЛОВЕЧЕСКИЕ :  истоки библейских преданий в обозрении врача (2025). Эссе датирует написание книги Бытие, изображенные в ней события и упоминание LCF, а также опровергает авторство Ветхозаветного Моисея. 29 .03 .2025   С. Архипов против F . Pauwels ☺   Публикация в группе  facebook.  28 .03 .2025 Биомеханика тазобедренного сустава без LCF .  Публикация в группе  facebook.  27 .03 .2025 Наружные связки и LCF .  Публикация в группе  facebook.  26 .03 .2025 модель тазобедренного сустава с аналогом lcf .  Публикация в группе  facebook.  25...

Рассуждение о морфомеханике. 1.2.24 Сердечная мышца

 

1.2.24 Сердечная мышца

Устройство сердечной мышцы принципиально не отличается от скелетной мышечной ткани. Основными гистологическими элементами сердечной мышцы являются кардиомиоциты. Они, будучи соединенные друг с другом вставочными дисками, залегают между элементами рыхлой соединительной ткани. Их сократительный аппарат, аналогичен скелетной мышце и представлен миофибриллами, которые в отличие от других волокнистых структур организма отграничены сарколеммой (Бойчук Н.В. и соавт., 1997).

Сердечная мышечная ткань образует мышечную оболочку сердца – миокард. Наружный его слой состоит из косых пучков, глубокий из пучков, поднимающихся от верхушки сердца к основанию, а средний имеет циркулярную ориентацию. Между предсердиями и желудочками залегает плотная соединительная ткань в виде колец, связанных с клапанами и их сухожильными струнами (Синельников Р.Д., 1973).

Соединительная ткань, формирующая клапанный аппарат, составляет единую структуру с рыхлой соединительной тканью, окружающей кардиомиоциты и участвующей в образовании стенок сосудов, покидающих и впадающих в сердце. Соединительная ткань образует упруго-эластичный скелет сердца. Как в крупных сосудах, так и в сердце встречаются эластические и коллагеновые волокна, первые из них доминируют. Больше всего волокон эластического типа встречается в эндокарде, где они располагаются между гладкомышечными клетками (Гистология..., 1972).

Размеры кардиомиоцитов существенно меньше, клеток скелетных мышц, соответственно и длина их сократительных элементов. Кардиомиоциты объединяются в ветвящиеся цепочки - сердечные «волокна». Другим отличием скелетной мышцы от мышцы сердца является непроизвольность ее сокращения благодаря деятельности автономного источника иннервации – пейсмекера (Хэм А., Кормак Д., 1983).

Насосная функция сердца обеспечивается его сокращением, то есть целенаправленным деформированием, и вызывает движение крови по сосудам. Давление крови, развиваемое в левом желудочке сердца у человека, находящегося в покое, составляет 120 мм рт. ст. и увеличивается при физической нагрузке. Сила сокращения мышцы сердца тесно связана с величиной напряжения в его стенке. Согласно уравнению Лапласа, напряжение прямо пропорционально давлению, а также радиусу полости и обратно пропорционально толщине стенки. Давление крови и, следовательно, напряжение в стенке сердца имеет пульсирующий характер (Циммерман М. и соавт., 1996).

В процессе работы сердца, в цикле сердечных сокращений, структуры, образующие сердце как орган, упруго деформируются. Вследствие периодического сокращения кардиомиоцитов наблюдаются деформации сжатия, растяжения и изгиба элементов сердца. Основная роль в противодействии возникающим потокам внутренних сил, принадлежит соединительнотканным образованиям, как выше было указано, являющихся «скелетом» сердца. Отмечается четкое соответствие строения отдельных элементов сердца тем напряжениям, которые в них действуют. Наличие коллагеновых и эластических волокон в клапанах сердца позволяет им адекватно противостоять циклической деформации изгиба и растяжения. Доминирование коллагеновых волокон в фиброзном кольце и сухожильных струнах как нельзя более всего обеспечивает им способность противостоять растягивающим силам.

Внутренняя оболочка сердца – эндокард, содержит значительное количество эластических волокон, что объясняется периодически наблюдающимся изгибом, растяжением и сжатием данного образования. Эндокард можно рассматривать, как эластический вид мышечной ткани (подробнее см. ниже). Присутствие в нем значительного числа эластических волокон предопределяет высокие эластические свойства стенок сердца. Кроме этого, особенность эластина обеспечивает определенную экономию энергии в фазе систолы, которая отчасти позволяет сократиться стенке сердца за счет ранее растянутых эластических волокон. Снижение прочности стенки сердца, высокая его хрупкость, ранимость связана с деструкцией эластических волокон, которая наблюдается практически во всех тканях у пожилых (эластолиз).

Рыхлая соединительная ткань, окружающая кардиомиоциты миокарда, хорошо приспособлена к восприятию сил сжатия и растяжения, а также многократным деформациям. Примером соответствия ткани воздействующему на нее механическому фактору является кровь, заполняющая полости сердца. Именно жидкое состояние крови в полной мере отвечает требованиям, возлагаемым на ткань контактирующей с элементами, расположенными внутри сердца и его стенками. Сердечные сокращения вызывают многократные циклические деформации крови, которая перемещается, заполняет сложные по форме полости, испытывая периодическое сжатие, смещение слоев, разделение на потоки. Думается, что ни одна другая ткань не способна нормально существовать при подобных нагрузках и циклических деформациях кроме как жидкая.

Сила сокращения сердечной мышцы является для крови внешней силой. Однако она порождается самим организмом, и им регулируема, поэтому до известной степени может считаться внутренней силой живой системы. Как и в случае со скелетными мышцами, мышца сердца способна активно влиять на величины действующих напряжений и направление основных потоков внутренних сил в нем самом, в крови, опосредованно в стенках сосудов, а также в смежных с ними тканей. При этом сердечная мышца, через генерированные ею напряжения, оказывает влияние на строение, форму и функцию смежных с ней тканей и органов.


                                                                     

Автор:

Архипов С.В. – С.В. Архипов-Балтийский является псевдонимом, который использовался до начала 2006 года с целью более точной дифференцировки на научном поле.

Цитирование:

Архипов-Балтийский СВ. Рассуждение о морфомеханике. Норма. В 2 т. Т. 1. Гл. 1-4. - Испр. и доп. изд. Калининград, 2004. [aleph.rsl.ru]

Архипов-Балтийский СВ. Рассуждение о морфомеханике. Норма. В 2 т. Т. 2. Гл. 5-6. - Испр. и доп. изд. Калининград, 2004. [aleph.rsl.ru]

Примечания:

Первая крупная публикация автора, посвященная морфомеханике живых систем, биомеханике пояса нижних конечностей и связки головки бедра, ligamentum capitis femoris (LCF).

Ключевые слова

ligamentum capitis femorisligamentum teres, связка головки бедра, анатомия, морфомеханика, биомеханика

СОДЕРЖАНИЕ РЕСУРСА

Биомеханика и морфомеханика

Популярные статьи

Публикации о LCF в 2025 году (Март)

  Публикации о LCF в 2025 году (Март):  Статьи и книги с упоминанием LCF опубликованные в марте 2025 года. Matsushita, Y., Sugiyama, H., Hayama, T., Sato, R., & Saito, M. (2025). Long-term Outcome of Pediatric Arthroscopic Surgery for Avulsion Fracture of the Ligamentum Teres: A Case Report.  JBJS Case Connector ,  15 (1), e25.   [i]      journals.lww.com   Arkhipov, S. V. (2025).  Inferior Portal for Hip Arthroscopy: A Pilot Experimental Study. Pt. 2. Inferior Portal Prototypes.  About Round Ligament of Femur . February   26, 2025.   [ii]    researchgate . net   Pfirrmann, C. W., & Kim, Y. J. (2025). Advanced Imaging. In  Surgical Hip Dislocation: A Comprehensive Approach to Modern Hip Surgery  (pp. 29-42). Cham: Springer Nature Switzerland.   [iii]      link.springer.com   Singh, R., & Yadav, N. (2025). Morphometry and Morphology of the Fovea Ca...

Моделирование взаимодействия LCF нормальной длины и отводящей группы мышц

  Моделирование взаимодействия LCF нормальной длины и отводящей группы мышц   С целью дальнейшего уточнения значения отводящей группы мышц для биомеханики тазобедренного сустава, articulatio coxae , мы изучили ее взаимодействие со связкой головки бедренной кости, ligamentum capitis femoris , нормальной длины. Аналог связки головки бедренной кости одним концом соединялся с моделью вертлужной впадины, будучи пропущенным через отверстие, расположенное на границы ямки и канавки фасонной выточки модели вертлужной впадины (Рис. 1). Рис. 1. Тазовая часть механической модели тазобедренного сустава птицы, через отверстие в фасонной выточке, лежащее на границе ямки (круглого углубления) и канавки (продольного углубления) пропущен аналог связки головки бедренной кости; вид с латеральной стороны.     Другой конец аналога связки головки бедренной кости соединялся с бедренной частью модели после размещения тазовой части модели на головке бедренной части модели. Методика соеди...

Механическая модель с аналогом связки головки бедренной кости

  Механическая модель с аналогом связки головки бедренной кости   Для уточнения механической функции связки головки бедренной кости , ligamentum capitis femoris , применена ранее описанная трехмерная механическая модельтазобедренного сустава без аналогов наружных связок. В качестве аналога связки головки бедренной кости , ligamentum capitis femoris , использован плетеный капроновый шнур диаметром 5 мм. Одним концом он соединялся с моделью вертлужной впадины тазовой части модели, будучи пропущенным, через одно из отверстий в ее фасонной выточке. Изначально мы пропустили аналог связки головки бедренной кости через отверстие, выполненное в центре фасонной выточки модели вертлужной впадины. Это, по нашей мысли, моделировало прикрепление связки к дну ямки вертлужной впадины (Рис. 1).   Рис. 1. Тазовая часть механической модели тазобедренного сустава, через центральное отверстие в фасонной выточке пропущен аналог связки головки бедренной кости (вид с латеральной сторо...

Моделирование взаимодействия удлиненной LCF и отводящей группы мышц

  Моделирование взаимодействия удлиненной LCF и отводящей группы мышц В настоящей серии экспериментов на трехмерной механической модели тазобедренного сустава, мы еще больше уд линили часть аналога связки головки бедренной кости, которая располагалась внутри шарнира – аналоге вертлужного канала. Для этого аналог связки головки бедренной кости одним концом он соединялся с моделью вертлужной впадины, будучи пропущенным, через отверстие в канавке фасонной выточке. При этом область крепления располагалась на расстоянии 25 мм от наружного края модели вертлужной впадины (Рис. 1). Рис. 1. Тазовая часть механической модели тазобедренного сустава через отверстие в канавке фасонной выточки, лежащим на расстоянии 25 мм от наружного края, пропущен аналог связки головки бедренной кости (вид с латеральной стороны).   В данном случае смоделировано крепление проксимального конца связки головки бедренной кости, ligamentum capitis femoris , в середине вырезки вертлужной впадины, incisur...

УЧЕНИЕ О LCF

уЧЕНИЕ   О   ligamentum capitis femoris:   Инструмент познания и инноваций. Определение: Совокупность теоретических положений о всех аспектах знаний об анатомическом элементе  ligamentum   capitis   femoris   ( LCF ).   1. Структура Учения о LCF 2. Практическое приложение Учения о LCF: 2.1. Диагностика 2.1. Певенция   2.3. Прогноз 2.4. Патология 2.5. Ветеринария   2.6. Профессии     2.7. Изделия     2.8. Хирургия   3. Теория Механики LCF    4. Фундамент Учения о LCF 5. Лестница в прошлое или История Учения о LCF 6. Предельная глубина исследований   7. Приложения 7.1. Допустимые синонимы названия     Структура  УЧЕНИя    О   ligamentum  capitis  femoris .       З     Е     М                   Л                       Л   ...