К основному контенту

НОВЫЕ ПУБЛИКАЦИИ

  Н ОВЫЕ ПУБЛИКАЦИИ РЕСУРСА:      01 .04 .2025 Публикации о LCF в 2025 году (Март)   Статьи и книги с упоминанием LCF опубликованные в марте 2025 года. 31 .03 .2025 Создан раздел  ИНТЕРНЕТ ЖУРНАЛ  для депонирования выпусков.  Интернет-журнал "О КРУГЛОЙ СВЯЗКЕ БЕДРА", март 2025. Второй  выпуск.  30 .03 .2025 2025АрхиповСВ. ДЕТИ ЧЕЛОВЕЧЕСКИЕ :  истоки библейских преданий в обозрении врача (2025). Эссе датирует написание книги Бытие, изображенные в ней события и упоминание LCF, а также опровергает авторство Ветхозаветного Моисея. 29 .03 .2025   С. Архипов против F . Pauwels ☺   Публикация в группе  facebook.  28 .03 .2025 Биомеханика тазобедренного сустава без LCF .  Публикация в группе  facebook.  27 .03 .2025 Наружные связки и LCF .  Публикация в группе  facebook.  26 .03 .2025 модель тазобедренного сустава с аналогом lcf .  Публикация в группе  facebook.  25...

Рассуждение о морфомеханике. 6.1.12 Инициаторы остеогенеза

 

6.1.12 Инициаторы остеогенеза

Оригинальные работы Kirchner (1916), Bier (1918), Putti (1918), Кромпхера (1937), Anderson (1939), Г.А.Илизарова и его последователей убедительно продемонстрировали, что одним из инициаторов остеогенеза является напряжение. Считается доказанным «…стимулирующее влияние напряжения при растяжении тканей на генез и рост последних» (Омельяненко Н.П. и соавт., 1997).

Согласно созданной Вирховым теории метаплазии, «соединительная ткань, с которой генетически тесно связана костная ткань, при определенных условиях может превращаться в костную» (Корж А.А., 1963). Известно, что соединительная ткань между фрагментами удлиняемой кости, под влиянием растяжения, а затем фиксации, замещается костной тканью (Борзунов Д.Ю. и соавт., 2000). В настоящее время в этом уже никто не видит нечто необычное. Этот эффект каждодневно используется в обыденной клинической практике.

«Дозированная микродеформация оптимизирует условия для остеорепарации, активизирует репаративные процессы и дифференцирование костной ткани, ускоряя завершение перестройки костной мозоли» (Руцкий В.В. и соавт., 1989). Считается экспериментально доказанным и «…оптимизирующий характер воздействия повышенной гравитационной нагрузки на репаративный остеогенез» (Яшков А.В. и соавт., 1997).

Остеогенез многоэтапный процесс, имеющий регуляторные факторы (химические) в т.ч. и гормоны… «…отдельные трабекулы, соединяясь между собой, образуют пространственную решетку с характерной концентрацией трабекул вдоль линий напряжений». В условиях невесомости отмечается меньший прирост костной массы преимущественно за счет губчатого вещества. Наблюдалось возрастание порозности, атрофия губчатого вещества кости. В период реадаптации происходило восстановление показателей поперечных размеров кости. Остеопороз в губчатом веществе не сопровождается изменением степени минерализации резкое снижение сопротивляемости деформации и разрушению губчатого вещества в период реадаптации происходит восстановление измененных свойств. Искусственно созданная гравитация предотвращает атрофические изменения в костях. При гипокинезии и гиподинамии повышается хрупкость костной ткани истончение и уменьшение количества трабекул истончение кортикального слоя и появление каналов резорбции в местах прикрепления мышц. Вместо термина «остеопороз» предлагается использовать термин «остеодистрофия». «Отсутствие силового воздействия на кость в условиях весовой разгрузки вызывает изменение собственного внутреннего напряжения соответственно новым функциональным условиям. Наиболее быстро и эффективно это может произойти за счет ослабления ионных и гидроксильных связей между органическими и минеральными компонентами и как следствие, уменьшения жесткости кости как композита и выравнивания напряжений». «Ослабление связей между органическим и минеральным компонентами может сопровождаться сниженной прочностью костной ткани за счет уменьшения напряженного состояния кости. В таком случае губчатые структуры с меньшим исходным напряженным состоянием будут утрачивать прочность в меньшей степени, чем компактные структуры с более высоким напряжением». Распространенной гипотезой является то, что пусковым механизмом местной регуляции костного метаболизма является генерация костного электрического потенциала, связанного с многочисленными циклами ее деформации при механической нагрузке и управляющей, в конечном счете, клеточной активностью. Может играть роль и изменение кровоснабжения кости в невесомости. Плотная структура более инертна, скорость ее рассасывания меньше она может отражать интенсивность общих метаболических процессов в организме (Ступаков Г.П., Воложин А.И., 1989).

C.Johnson в 1951 году высказал мысль о том, что кость обладает пьезоэлектрическими свойствами. Позднее, в 1956 г., автор продемонстрировал, возникновение электрических потенциалов в динамически деформированной кости. Независимо от него Yasuda (1953) сообщил о сходных результатах. Исследования Yasuda позволили ему заявить, что механическое, химическое, или электрическое «раздражение» вызывают остеогенез. Первые эксперименты, связывающие электрические потенциалы, порожденные физиологической деформацией, с остеогенезом были поставлены Bassett et al. (1964). С тех пор, многочисленные сообщения подтвердили и расширили эти представления. Теперь ясно, что слабые постоянные токи могут стимулировать остеогенез в области катода, и животных и у больных (Friedenberg, Kohanim 1966; Брайтоне et al. 1981; Bassett 1983). Позднее обрела доказательства мысль Goodman et al. (1987), о воздействии на клетки электрического поля (Bassett C.A.L., 1992).

Friedenberg et al., (1970) нашли, что остеогенез стимулируется около катода, а рассасывание кости стимулируется около анода. Это позволяет выдвинуть гипотезу, что моделирование или перемоделирование активизированы электрическими потенциалами, вызванными градиентами электрического напряжения. Как показали эксперименты Williams, Breger (1974), положительный электрический потенциал связан с положительным градиентом напряжения, и наоборот (Martin R.B. et al., 1998).

Как можно заметить, ряд исследователей в качестве инициатора остеогенеза видят электрический фактор. Зачастую прямо указывается - «воздействие электрического тока может активизировать остеогенез». «Стимуляция остеогенеза наблюдается при постоянном токе у катода и в межэлектродном пространстве – при переменном». У анода отмечается некроз и угнетение остеорепарации. «Импульсный ток усиливает клеточную пролиферацию и дифференциацию с повышением образования остеобластов и увеличением активности, но только на ранних стадиях репаративной регенерации». «Экспериментально установлена принципиальная возможность индукции остегенеза в высокодифференцированных опорных тканях, таких как мышечная, фиброзная и хрящевая». Анодная поляризация вызывает некроз, а затем формирование грануляционной ткани. «Последующая катодная поляризация активизирует остеогенез из мезенхимальных плюрипотентных элементов». На поверхности сжатия костной ткани образуется отрицательный заряд, а на растягиваемой положительный. В области сжатия кости наблюдается ее гипертрофия, а при растяжении ее резорбция. «Электрические потенциалы независимо от их природы и происхождения могу являться тем неизвестным звеном, которое осуществляет прямую и обратную связь между структурой и функцией» (Ткаченко С.С., Руцкий В.В., 1989).

«Под воздействием электростатического поля, индуцируемого электретами, остеорепарация отличается более активным формированием костной мозоли, ее завершенностью, ранней перестройкой и восстановлением механической прочности костного регенерата» (Хомутов В.П. и соавт., 1995). «Воздействие электростатического поля электрета на остеорепарацию обусловлено влиянием на рост и ориентацию остеогенных структур, степень их минерализации, раннее ремоделирование костной мозоли» (Хомутов В.П. и соавт., 1997).

Электрические процессы нормализуют и стимулируют остеорепарацию, отмечает С.С.Ткаченко и соавт. (1985).

По мнению А.Н.Челнокова и соавт. (1995), «импульсное сложномоделированное электромагнитное поле в диапазоне 50-90 Гц способствует более быстрому ремоделированию кости в области перелома».

«Дифференцировка костной ткани и формирование опорно-двигательного аппарата невозможны без механических нагрузок». «Под нагрузкой сдавления костные структуры гипертрофируются, при растяжении – резорбируются». «Деформация костной ткани при механических нагрузках и перемещении электрических зарядов сопровождается образованием динамических электрических потенциалов …, во-первых, они … управляют активностью костных клеток; во-вторых, … играют роль генератора электрической энергии для поддержания статического электрогенеза». При иммобилизации он нарушается, а «нарушения статического и динамического репаративного электрогенеза искажают остерепарацию» (Руцкий В.В., 1987).

Многочисленные эксперименты выше цитированных авторов по электростимуляции остерепарации все-таки недостаточно убедительны, так как не исключен полностью механический фактор, иммобилизация практически всегда присутствовала в той или иной форме.

Вместе с тем по данным S.R.Pollack (1984), «биологические потенциалы не требуют приложения нагрузки, и ни один из приведенных экспериментов не определил физиологического смысла эндогенных электрических сигналов в кости». «Соблазнительно, однако поразмышлять о том, что позитивные электрические эффекты на выгнутой стороне и отрицательные на вогнутой могут вносить вклад в стимуляцию или активность соответственно остеокластов и остеобластов на этих двух сторонах» (Ревелл П.А., 1993). Здесь сложно, что-либо еще добавить…


                                                                     

Автор:

Архипов С.В. – С.В. Архипов-Балтийский является псевдонимом, который использовался до начала 2006 года с целью более точной дифференцировки на научном поле.

Цитирование:

Архипов-Балтийский СВ. Рассуждение о морфомеханике. Норма. В 2 т. Т. 1. Гл. 1-4. - Испр. и доп. изд. Калининград, 2004. [aleph.rsl.ru]

Архипов-Балтийский СВ. Рассуждение о морфомеханике. Норма. В 2 т. Т. 2. Гл. 5-6. - Испр. и доп. изд. Калининград, 2004. [aleph.rsl.ru]

Примечания:

Первая крупная публикация автора, посвященная морфомеханике живых систем, биомеханике пояса нижних конечностей и связки головки бедра, ligamentum capitis femoris (LCF).

Ключевые слова

ligamentum capitis femorisligamentum teres, связка головки бедра, анатомия, морфомеханика, биомеханика

СОДЕРЖАНИЕ РЕСУРСА

Биомеханика и морфомеханика

Популярные статьи

Публикации о LCF в 2025 году (Март)

  Публикации о LCF в 2025 году (Март):  Статьи и книги с упоминанием LCF опубликованные в марте 2025 года. Matsushita, Y., Sugiyama, H., Hayama, T., Sato, R., & Saito, M. (2025). Long-term Outcome of Pediatric Arthroscopic Surgery for Avulsion Fracture of the Ligamentum Teres: A Case Report.  JBJS Case Connector ,  15 (1), e25.   [i]      journals.lww.com   Arkhipov, S. V. (2025).  Inferior Portal for Hip Arthroscopy: A Pilot Experimental Study. Pt. 2. Inferior Portal Prototypes.  About Round Ligament of Femur . February   26, 2025.   [ii]    researchgate . net   Pfirrmann, C. W., & Kim, Y. J. (2025). Advanced Imaging. In  Surgical Hip Dislocation: A Comprehensive Approach to Modern Hip Surgery  (pp. 29-42). Cham: Springer Nature Switzerland.   [iii]      link.springer.com   Singh, R., & Yadav, N. (2025). Morphometry and Morphology of the Fovea Ca...

Моделирование взаимодействия LCF нормальной длины и отводящей группы мышц

  Моделирование взаимодействия LCF нормальной длины и отводящей группы мышц   С целью дальнейшего уточнения значения отводящей группы мышц для биомеханики тазобедренного сустава, articulatio coxae , мы изучили ее взаимодействие со связкой головки бедренной кости, ligamentum capitis femoris , нормальной длины. Аналог связки головки бедренной кости одним концом соединялся с моделью вертлужной впадины, будучи пропущенным через отверстие, расположенное на границы ямки и канавки фасонной выточки модели вертлужной впадины (Рис. 1). Рис. 1. Тазовая часть механической модели тазобедренного сустава птицы, через отверстие в фасонной выточке, лежащее на границе ямки (круглого углубления) и канавки (продольного углубления) пропущен аналог связки головки бедренной кости; вид с латеральной стороны.     Другой конец аналога связки головки бедренной кости соединялся с бедренной частью модели после размещения тазовой части модели на головке бедренной части модели. Методика соеди...

Механическая модель с аналогом связки головки бедренной кости

  Механическая модель с аналогом связки головки бедренной кости   Для уточнения механической функции связки головки бедренной кости , ligamentum capitis femoris , применена ранее описанная трехмерная механическая модельтазобедренного сустава без аналогов наружных связок. В качестве аналога связки головки бедренной кости , ligamentum capitis femoris , использован плетеный капроновый шнур диаметром 5 мм. Одним концом он соединялся с моделью вертлужной впадины тазовой части модели, будучи пропущенным, через одно из отверстий в ее фасонной выточке. Изначально мы пропустили аналог связки головки бедренной кости через отверстие, выполненное в центре фасонной выточки модели вертлужной впадины. Это, по нашей мысли, моделировало прикрепление связки к дну ямки вертлужной впадины (Рис. 1).   Рис. 1. Тазовая часть механической модели тазобедренного сустава, через центральное отверстие в фасонной выточке пропущен аналог связки головки бедренной кости (вид с латеральной сторо...

Моделирование взаимодействия удлиненной LCF и отводящей группы мышц

  Моделирование взаимодействия удлиненной LCF и отводящей группы мышц В настоящей серии экспериментов на трехмерной механической модели тазобедренного сустава, мы еще больше уд линили часть аналога связки головки бедренной кости, которая располагалась внутри шарнира – аналоге вертлужного канала. Для этого аналог связки головки бедренной кости одним концом он соединялся с моделью вертлужной впадины, будучи пропущенным, через отверстие в канавке фасонной выточке. При этом область крепления располагалась на расстоянии 25 мм от наружного края модели вертлужной впадины (Рис. 1). Рис. 1. Тазовая часть механической модели тазобедренного сустава через отверстие в канавке фасонной выточки, лежащим на расстоянии 25 мм от наружного края, пропущен аналог связки головки бедренной кости (вид с латеральной стороны).   В данном случае смоделировано крепление проксимального конца связки головки бедренной кости, ligamentum capitis femoris , в середине вырезки вертлужной впадины, incisur...

УЧЕНИЕ О LCF

уЧЕНИЕ   О   ligamentum capitis femoris:   Инструмент познания и инноваций. Определение: Совокупность теоретических положений о всех аспектах знаний об анатомическом элементе  ligamentum   capitis   femoris   ( LCF ).   1. Структура Учения о LCF 2. Практическое приложение Учения о LCF: 2.1. Диагностика 2.1. Певенция   2.3. Прогноз 2.4. Патология 2.5. Ветеринария   2.6. Профессии     2.7. Изделия     2.8. Хирургия   3. Теория Механики LCF    4. Фундамент Учения о LCF 5. Лестница в прошлое или История Учения о LCF 6. Предельная глубина исследований   7. Приложения 7.1. Допустимые синонимы названия     Структура  УЧЕНИя    О   ligamentum  capitis  femoris .       З     Е     М                   Л                       Л   ...