К основному контенту

Клинико-экспериментальное обоснование эндопротеза тазобедренного сустава с аналогом связки головки бедренной кости

 

Клинико-экспериментальное обоснование эндопротеза тазобедренного сустава с аналогом связки головки бедренной кости

Архипов С.В. 

Аннотация

Выполнено клинико-экспериментальное обоснование эндопротеза тазобедренного сустава (ТБС) с аналогом связки головки бедренной кости. На плоскостной и трехмерной модели исследована его биомеханика. Уточнена функция связки головки бедренной кости и ее взаимодействие с отводящей группой мышц во фронтальной плоскости. Использованная в экспериментах трехмерная модель может явиться прототипом эндопротеза ТБС нового.

Введение

Основой эндопротезирования ТБС является ясное понимание его биомеханики. Существенный вклад в ее осмысление привнесли исследования F. Pauwels и R. Bombelli, [1, 2], а применительно к эндопротезированию ТБС – работы J. Charnley [3]. К настоящему времени создано значительное количество вариантов эндопротеза ТБС. Несмотря на это, проблемы вывиха и износа пары трения остаются актуальными [4, 5].

По мнению большинства исследователей, в одноопорном ортостатическом положении (ООП) эндопротез ТБС функционирует как аналог рычага первого рода. Действие веса тела уравновешивается усилием отводящей группы мышц. При этом результирующая сила действует на головку эндопротеза сверху и составляет приблизительно четырехкратный вес тела [3]. В современных эндопротезах ТБС, выпускающихся промышленно, не предусмотрено введение аналога связки головки бедренной кости (СГБК). Вместе с тем известно, что присутствующая в нормальном ТБС СГБК ограничивает приведение бедра [6], играет важную роль в биомеханике ТБС и препятствует вывиху [7]. Стремление уменьшить частоту вывиха головки эндопротеза послужило основанием для отдельных исследователей вводить в конструкцию эндопротеза ТБС аналог СГБК [7, 8]. Однако, как показал анализ литературы, функция СГБК до конца не изучена, а теория биомеханики эндопротеза ТБС с ее аналогом не разработана.

Цель исследования

Уточнить функцию СГБК, ее взаимодействие с отводящей группой мышц, разработать и обосновать концептуальную модель эндопротеза ТБС с аналогом СГБК, рассмотреть его биомеханику в ООП.

Материал и методы

Клинически обследовано 104 мужчины в возрасте от 18 до 24 лет (в среднем 18.9 лет) без признаков патологии ТБС. Изучены особенности напряженного ООП («сильный» тип стойки) и ненапряженного ООП («слабый» тип стойки) [9]. Измерена величина угла приведения в ненапряженном ООП, а также величина угла приведения в положении лежа на животе с пассивным замыканием ТБС во фронтальной и сагиттальной плоскости связочным аппаратом без участия мышц.

Для уточнения функции СГБК и отводящей группы мышц выполнена плоскостная механическая модель ТБС, содержащая аналоги указанных структур. На жесткий картон раздельно скопированы с рентгенограммы, а затем вырезаны: таз и проксимальная часть бедренной кости. В качестве аналога СГБК использована капроновая нить, соединявшая центр изображения ямки головки бедренной кости с точкой в нижнем отделе изображения ямки вертлужной впадины. В качестве аналога отводящей группы мышц использован тонкий резиновый шнур диаметром 1 мм. Один его конец соединялся с верхним краем изображения крыла подвздошной кости, а другой – с большим вертелом бедренной части. Моделированы условия равновесия таза во фронтальной плоскости при ООП. Изучены объем возможных движений и локализация зон нагрузки в отсутствии аналога СГБК и отводящей группы мышц и при их наличии в различных сочетаниях.

Из металла выполнена трехмерная концептуальная модель эндопротеза ТБС с аналогом СГБК и отводящей группы мышц. Основой бедренной части стал однополюсной эндопротез ТБС конструкции Томпсона, закрепленный на кольцевидном основании и снабженный планкой, имитирующей большой вертел. В соответствии с диаметром головки выполнена модель вертлужной впадины. Внутри ее выбрано фасонное углубление, напоминающее по форме ямку и вырезку вертлужной впадины. Снаружи присоединена планка, имитирующая крыло подвздошной кости, и планка для подвешивания нагрузки. В качестве аналога СГБК использован капроновый шнур, соединявшийся с центром фасонного углубления модели вертлужной впадины и с головкой бедренной части. Отводящая группа мышц имитирована динамометром, а в узел трения вводилось смазочное масло.

Свойства модели изучены при отсутствии аналога СГБК и отводящей группы мышц, а также при их наличии в различных сочетаниях. В отдельных экспериментах изменялась длина аналога отводящей группы мышц, что воспроизводило различную степень напряжения мышцы. Уточнены возможные движения в шарнире модели, их объем и элементы ограничители. Моделированы условия равновесия таза во фронтальной плоскости при ненапряженном и напряженном типе ООП с эндопротезом, содержащим аналог СГБК.

Результаты и обсуждение

Анализ данных, полученных при клиническом обследовании, позволил выявить, что наиболее комфортным и достаточно устойчивым является ненапряженное ООП. Для него характерно приведение, разгибание и супинация в ТБС, а также наклон таза вниз во фронтальной плоскости при минимальном мышечном напряжении. Угол максимального приведения в ТБС составил 18.51±2.29°, медиана и мода 19°. В положении лежа на животе при замыкании ТБС в сагиттальной плоскости без участия мышц угол приведения был равен 19.09±2.52°, а медиана и мода – 19°. Средние значения угла приведения в ненапряженном ООП и лежа практически неразличимы (t=0.21), а коэффициент корреляции 0.90 при уровне достоверности P<0.001. Эти данные свидетельствуют, что в ненапряженном ООП наблюдается замыкание ТБС во фронтальной плоскости, прежде всего связочным аппаратом с минимальным участием мышц.

В экспериментах на моделях установлено, что в норме СГБК препятствует вывиху, ограничивает приведение в ТБС. Латеральное и краниальное смещение головки бедренной кости (ГБК) участвует в ограничении отведения, пронации, супинации и смещения ГБК кнаружи. Натягиваясь посредством приведения, СГБК замыкает (стопорит) ТБС во фронтальной плоскости и прижимает ГБК к вертлужной впадине. Без участия отводящей группы мышц нагруженной оказывается нижняя полусфера ГБК. Установлено, что отводящая группа мышц ограничивает приведение в ТБС. Ее изолированное напряжение увеличивает отведение и обуславливает сжатие суставных поверхностей в кранио-медиальном отделе ТБС.

Анализ экспериментальных данных показал, что в ООП без напряжения отводящей группы мышц ТБС во фронтальной плоскости преобразуется в аналог рычага второго рода. При условии, что плечо веса тела в три раза больше плеча силы реакции СГБК, последняя будет приблизительно равна утроенному весу тела, а величина результирующей силы, действующей на ГБК снизу, – удвоенному весу тела. Данная ситуация наблюдается в нормальном ТБС и в эндопротезе с аналогом СГБК в конце одноопорного периода шага и при повреждении отводящей группы мышц.

В напряженном ООП без натяжения СГБК ТБС во фронтальной плоскости стопорится отводящей группой мышц и ее антагонистами представляет собой аналог рычага первого рода, а нагруженной оказываются верхняя полусфера ГБК. Если принять, что плечо веса тела в три раза больше плеча отводящей группой мышц, величина ее усилия будет эквивалентна утроенному весу тела, а величина результирующей силы, действующей на ГБК сверху, окажется равной учетверенному весу тела. Данная нагрузка в норме действует в период перехода от двухопорного ортостатического положения к ненапряженному типу ООП, а также в начале одноопорного периода шага, и постоянно в протезированном ТБС.

В ненапряженном ООП, при котором одновременно натянута СГБК и напряжена отводящая группа мышц, ТБС представляет собой аналог рычага первого рода. Если принять, что плечо веса тела приблизительно равно плечу усилия отводящей группы мышц, ГБК оказывается нагруженной равномерно результирующей силой, направленной изнутри кнаружи, составляющей приблизительно удвоенный вес тела. Тогда величина нагрузки верхней и нижней полусферы ГБК составляет приблизительно один вес тела. Ненапряженный тип ООП является оптимальным в плане нагрузки на мышечно-связочный аппарат и суставные поверхности. Он чаще присутствует в ООП и наблюдается в середине одноопорного периода шага в нормальном ТБС, а также с эндопротезом, содержащим аналог СГБК.

Заключение

Таким образом, СГБК ограничивает приведение, латеральное и краниальное смещение ГБК, способна стопорить ТБС во фронтальной плоскости преобразуя его в аналог рычага второго рода, вывих без ее повреждения невозможен. Отводящая группа мышц ограничивает приведение в ТБС, в содружестве с антагонистами способна стопорить его во фронтальной плоскости в произвольном положении, обуславливает сжатие суставных поверхностей в кранио-медиальном отделе, а ее напряжение уменьшает натяжение СГБК. В ООП, когда шарнир эндопротеза ТБС стопорится во фронтальной плоскости только за счет аналога СГБК, результирующая нагрузка воздействует на головку снизу и равна приблизительно удвоенному весу тела. При напряженном типе ООП без натяжения аналога СГБК шарнир эндопротеза ТБС стопорится во фронтальной плоскости за счет напряжения отводящей группы мышц, а результирующая нагрузка воздействует на головку сверху и равна приблизительно учетверенному весу тела. В ненапряженном ООП с сочетанием напряжения отводящей группы мышц и натяжения аналога СГБК нагрузка, эквивалентная удвоенной массе тела, равномерно распределяется по контактным поверхностям верхней и нижней полусферы шарнира эндопротеза.

Введение в конструкцию эндопротеза ТБС элемента аналога СГБК позволит уменьшить скорость износа пары трения, снизит нагрузку на отводящую группу мышц, повысит устойчивость ООП, предотвратит возможный вывих в шарнире. Использованная нами трехмерная модель может явиться прототипом эндопротеза ТБС нового поколения.

Список литературы

Pauwels F. Biomechanics of the locomotor apparatus. Berlin, Heidelberg, New York: Springer-verlag; 1980; 518 p.

Bombelli R. Structure and function in normal and abnormal hip: how to rescue mechanically jeopardized hip. Berlin, Heidelberg, New York: Springer Verlag; 1993; 221 p.

Charnley J. Low friction arthroplasty of the hip. Berlin, Heidelberg, New York: Springer verlag; 1979; 376 p.

Алиев Г.А., Кормилицин О.П., Плоткин Е.В., Шукейло Ю.А. Биомеханика в реабилитологии (травматология и ортопедия). СПб: Политехника; 2002; 159 с.

Корнилов Н.В., Войтович А.В., Машков В.М., Эпштейн Г.Г. Хирургическое лечение дегенеративно-дистрофических поражений тазобедренного сустава. - СПб: «ЛИТО Синтез»; 1997; 292 с.

Орлецкий А.К., Малахова С.О., Морозов А.К., Огарев Е.В. Артроскопическая хирургия тазобедренного сустава. М: 2004; 104 с.

Неверов В.А., Шильников В.А. Способ формирования искусственной связки головки бедра при эндопротезировании. Вестн. хирург. 1993; 7-12: 81-83.

Дудко Г.Е. Формирование связки головки бедренной кости при эндопротезировании. Ортопед., травматол. 1989; №12: 57-58.

Беленький В.Е. Некоторые вопросы биомеханики тазобедренного сустава. Дисс.… канд. мед. наук. М; 1962.

Resume 

S.V.Arсhipov

Clinical-experimental substantiation of an endoprosthesis of a hip with analogue of ligamentum capitis femoris 

The clinical-experimental substantiation of endoprosthesis of the hip with analogue of ligamentum capitis femoris is executed. On 2-D and 3-D model its biomechanics is researched. Function of ligamentum capitis femoris and its interaction with abductor muscles is specified. The three-dimensional model used in experiments can be the prototype of the new endoprosthesis of the hip.

Автор:

Архипов С.В.

Полесская центральная районная больница

238630, Россия, Калининградская область, г. Полесск, ул. Советская д.4, E-mail: archipovkgd@mail.ru,

Ключевые слова:

тазобедренный сустав, эндопротез, эксперимент, биомеханика, ligamentum capitis femoris, связка головки бедра, круглая связка

Цитирование:

Архипов СВ. Клинико-экспериментальное обоснование эндопротеза тазобедренного сустава с аналогом связки головки бедренной кости. Нижегородский мед. журн. (приложение) 2006:346-8.

Примечания:

Публикация посвящена изучению прототипа эндопротеза тазобедренного сустава с аналогами наружных связок и ligamentum capitis femoris, уточнены особенности мышечно-связочного взаимодействия и распределения нагрузок в ортостатических позах и при ходьбе. Рассмотренная концепция эндопротезирования с реконструкцией связочного аппарата позволит уменьшить частоту вероятных осложнений. 

СОДЕРЖАНИЕ РЕСУРСА

 Фиксаторы и эндопротезы

Комментарии

Популярные статьи

2024АрхиповСВ. Девятый месяц, одиннадцатый день

Монография « Девятый месяц, одиннадцатый день » посвящена древнейшему упоминанию травмы ligamentum capitis femoris (LCF) и судьбе первого пациента с данной патологией.  Ниже размещена дополненная интерактивная версия.  В виде PDF документа книга опубликована в Google Play и Google Book .    АННОТАЦИЯ Предание книги Бытие о борьбе Патриарха Иакова с богом – пересказ сна. Наше мнение базируется на оценке легенды с медицинской точки зрения. Анализ текста с учетом достоверных сведений показал: первая версия написана почти 3600 лет назад в Египте. Над произведением работали два сочинителя. Один, врач-энциклопедист, дополнил семейные сказания соавтора дубликатами литературных персонажей и научными фактами. Последнее сделало основу библейской эпопеи правдоподобной в глазах современников. Позже художественно обработанное сновидение явилось узловым обстоятельством доктрин крупнейших религий. Кому и почему это потребовалось, не обсуждается. Большинство загадок ветхозаветног...

СОДЕРЖАНИЕ РЕСУРСА

  LCF –  ключ к грациозной походке, выяснению причин болезней тазобедренного сустава и опровержению мифов о них. Мы представляем перспективное научное знание, необходимое для сбережения здоровья, разработки  имплантов и  новых способов лечения дегенеративно-дистрофических заболеваний тазобедренного сустава. Цель проекта: содействие сохранению нормальной походки и качества жизни, помощь в изучении механики  тазобедренного сустава, разработке эффективных способов лечения его болезней и травм.   СОДЕРЖАНИЕ  РЕСУРСА  БИОМЕХАНИКА И МОРФОМЕХАНИКА    ( О взаимосвязи механики и морфологии тазобедренного сустава ) 1586 PiccolominiA . Одно из первых рассуждений о биомеханике  LCF  с описанием ее формы, механических свойств и крепления. 1728 WaltherAF.   В выбранном отрывке обсуждаются анатомия, механические свойства и функции  LCF . 2004Архипов-БалтийскийСВ. Новая механика тазобедренного сустава.  2004...

Ваша публикация в блоге

  Публикации блога посвящены связке головки бедренной кости, именуемой на латыни ligamentum capitis femoris (LCF). Статьи и иллюстративный материал, обновляемый и публично обсуждаемый. На нашей площадке Вы можете разместить свой текст о LCF бесплатно на любом языке и далее его корректировать. Допустима публикация значимой цитаты, аннотации или всего произведения иного автора при условии соблюдения его законных прав. Участие в проекте – это перспективный вид научной кооперации, способ повышения эффективности в клинической практике и результативности исследовательской деятельности. Здесь вклад каждого умножается знаниями и опытом коллег, а также предшествующих поколений докторов и ученых, изучавших LCF. Все писатели о LCF обретают удобную возможность: участия в дискуссиях по темам, поднятым в их статье, получать комментарии специалистов и ценные советы в практической работе и научных изысканиях. У нас возможно представить и обсудить идею, зафиксировать свой приоритет, поделиться ...

ЭКСПЕРИМЕНТЫ И НАБЛЮДЕНИЯ

  ЭКСПЕРИМЕНТЫ И НАБЛЮДЕНИЯ    ( Наблюдаемые эффекты нормы и патологии, опыты на моделях ) 1672 GengaB .  Автор впервые сообщает о случае отсутствия  LCF  в обоих тазобедренных суставах.  1725SaltzmannJ_NicolaiHA.  Авторы сообщают о случае отсутствия LCF у пожилой женщины.  1738 LadmiralJ .  Первое изображение и описание LCF младенца. 1751 HallerA .  Автор описывает случай отсутствия  LCF  с двух сторон.  1779SandifortE.  Автор сообщает о случае отсутствия LCF.  1783 BonnA .  Автор описывает случаи отсутствия  LCF  и ямки головки бедренной кости.  1820 PallettaGB.  Автор подробно описывает топографию, строение и кровоснабжение  LCF . 1823 GerdyPN.  Автор наблюдал смещение головки бедренной кости из вертлужной впадины наружу при натяжении  LCF .  1827PaxtonJ.  Визуализация  LCF  через отверстие в вертлужной впадине? (интрига). 1833 GerdyPN.  Авт...

Эксперименты на рычажной модели

  Эксперименты на рычажной модели тазобедренного сустава Согласно современным представлениям, тазобедренный сустав , articulatio coxae , в одноопорной ортостатической позе функционирует как аналог рычага первого рода, что зачастую для наглядности иллюстрируется изображением рычажных весов ( Pauwels F ., 1973). С целью дальнейшего изучения биомеханики нижней конечности мы изготовили упрощенную рычажную модель тазобедренного сустава (Рис. 1).   Рис. 1. Рычажная модель тазобедренного сустава (вид с поворотом в 3/4); обозначения: 1 – основание, 2 – грузовая мачта, 3 – кронштейн грузовой мачты, 4 – рычаг, 5 – нагрузка, 6 – динамометр, 7 – серьга динамометра. Рычажная модель тазобедренного сустава выполнена из металлических планок. Она имела горизонтальное основание. К нему прикреплялась грузовая мачта, в верхней точке которой имелся кронштейн. К средней части грузовой мачты присоединялся на горизонтальной оси рычаг, который имел возможность свободного вращения во фронтальной пл...

Имитация взаимодействия всех связок, вертлужной губы и отводящей группы мышц

    Имитация взаимодействия всех связок, вертлужной губы и отводящей группы мышц   С целью дальнейшего уточнения функции взаимодействия всех связок трехмерная механическая модель тазобедренного сустава человека с аналогом вертлужной губы и аналогами наружных связок (лобково-бедренной связки, горизонтальной части подвздошно-бедренной связки, вертикальной части подвздошно-бедренной связки, седалищно-бедренной связки, круговой зоны) дополнена аналогом связки головки бедренной кости. На первом этапе мы изучили вариант сборки трехмерной механической модели тазобедренного сустава человека, в котором аналог связки головки бедренной кости пропускался через центральное отверстие в фасонной выточке модели вертлужной впадины (Рис. 1). Рис. 1. Трехмерная механическая модель правого тазобедренного сустава человека с аналогами всех связок и аналогом вертлужной губы; вверху – вид спереди (красной стрелкой указан проксимальный конец аналога связки головки бедренной кости, прикрепленный к...

2024АрхиповСВ. Глава 1

  Глава 1 монографии « Девятый месяц, одиннадцатый день » посвященной древнейшему упоминанию травмы ligamentum capitis femoris (LCF) и судьбе первого пациента с данной патологией.  Ниже размещена дополненная интерактивная версия.   Глава 1 СОЗДАНИЕ И ПЕРЕВОДЫ БИБЛИИ Сборник теологических произведений, особо почитаемых иудеями, самаритянами, христианами и мусульманами, именуется Библия . В основе эпопеи – Тора ( Закон / Учение ), – сакральное сочинение иудаизма, состоящее из пяти частей  [1] . По мнению духовенства, Пятикнижие содержит божественные откровения и повеления Всевышнего человеку. Согласно научным воззрениям, это переработанный свод образцов древнееврейской литературы, обрядовых, правовых и исторических материалов. В них присутствует удивительный калейдоскоп: сказаний, зримых образов, судеб, событий, а также отрывков: песнопений, афоризмов, речей, стихов разного жанра и эпох. Мы тоже не усматриваем сверхъестественности в возникновении Священного Писания ....

2024АрхиповСВ. Глава 2

  Глава 2 монографии « Девятый месяц, одиннадцатый день » посвященной древнейшему упоминанию травмы ligamentum capitis femoris (LCF) и судьбе первого пациента с данной патологией.  Ниже размещена дополненная интерактивная версия.   Глава 2   ДАТИРОВКА ВЕТХОЗАВЕТНОЙ ИСТОРИИ Живописный библейский фрагмент – предание об исходе семьи Патриарха Иакова из Месопотамии (Быт. 31:17-18) не сориентирован во времени. Летоисчисление книги Бытие ведется с туманного момента созидания Земли (Быт. 1:1). Единственный персонаж повествования, по отношению к которому усматривается потенциал датировки, – сын Патриарха Иакова Иосиф. Его биография подробно описана и четко разделена на периоды. Интервалы деятельности прочих героев определить сложнее. Складывается впечатление: перед нами труд литератора, подразумевавшего известную читателю давность событий. В рассказе об Иосифе можно рационально уточнить все основные этапы жизни, но не смерть. Означенное указывает на него как на возможного а...

Моделирование движений на муляже

  Моделирование движений на муляже тазобедренного сустава   С целью изучения изменения положения связки головки бедренной кости, ligamentum capitis femoris , при движениях в тазобедренном суставе, articulatio coxae , нами изготовлен стенд для экспериментов на муляже тазобедренного сустава . К горизонтально расположенному основанию, собранному из металлических пластин, прикреплена вертикальная опорная мачта, имеющая возможность поворачиваться вокруг вертикальной оси. Верхний конец опорной мачты был снабжен двухосевым (карданным) шарниром. Избранное положение в двухосевом шарнире имело возможность фиксироваться резьбовым соединением. К двухосевому шарниру опорной мачты прикреплялся муляж таза, pelvis . Головка муляжа проксимального конца бедренной кости , os femur , соединялась с муляжом таза, pelvis , аналогом связки головки бедренной кости, ligamentum capitis femoris . Нижний конец муляжа проксимального конца бедренной кости, ligamentum capitis femoris , соединялся с ...