К основному контенту

НОВЫЕ ПУБЛИКАЦИИ

  Н ОВЫЕ ПУБЛИКАЦИИ РЕСУРСА:      01 .04 .2025 Публикации о LCF в 2025 году (Март)   Статьи и книги с упоминанием LCF опубликованные в марте 2025 года. 31 .03 .2025 Создан раздел  ИНТЕРНЕТ ЖУРНАЛ  для депонирования выпусков.  Интернет-журнал "О КРУГЛОЙ СВЯЗКЕ БЕДРА", март 2025. Второй  выпуск.  30 .03 .2025 2025АрхиповСВ. ДЕТИ ЧЕЛОВЕЧЕСКИЕ :  истоки библейских преданий в обозрении врача (2025). Эссе датирует написание книги Бытие, изображенные в ней события и упоминание LCF, а также опровергает авторство Ветхозаветного Моисея. 29 .03 .2025   С. Архипов против F . Pauwels ☺   Публикация в группе  facebook.  28 .03 .2025 Биомеханика тазобедренного сустава без LCF .  Публикация в группе  facebook.  27 .03 .2025 Наружные связки и LCF .  Публикация в группе  facebook.  26 .03 .2025 модель тазобедренного сустава с аналогом lcf .  Публикация в группе  facebook.  25...

Роль связок тазобедренного сустава в одноопорном периоде шага (экспериментальное исследование)


Роль связок тазобедренного сустава в одноопорном периоде шага (экспериментальное исследование)

Архипов С.В.

Согласно современным представлениям о биомеханике ходьбы, продвижение тела вперед обусловлено действием мышц и эффектом «свободного падения» [Скворцов Д.В., 2007]. Мышцы контролируют баланс, стабилизируют тазобедренный сустав (ТБС) и тормозят движения в нем [Winter D.A., 1990]. Вместе с тем роль связочного аппарата ТБС в его биомеханике изучена недостаточно. Имеются лишь отрывочные данные о значимости наружных связок: замыкании ТБС при разгибании в нем за счет натяжения подвздошно-бедренной связки при ходьбе [Perry J., 1992]. В работах последнего времени отмечается, что и связка головки бедренной кости (СГБК) является важным стабилизатором бедра, но ее роль в одноопорном периоде шага не обсуждается [Cerezal L. et al., 2010].

При ходьбе мышцам отдается безусловный приоритет. Так считается, что в одноопорном периоде шага таз во фронтальной плоскости удерживается усилием отводящей группы мышц [Pauwels F., 1965, 1980; Bombelli R., 1993]. При этом ТБС представляет собой аналог рычага первого рода, точкой опоры которого является головка бедренной кости (ГБК) [Lehmkuhl L., Smith L.K., 1984]. Расчеты, в основу которых положена эта «классическая» концепция, свидетельствуют, что во время ходьбы нагрузка на ГБК может достигать шестикратного веса тела [Paul J.P., 1965]. При этом отдельные исследователи закономерно задавали вопрос: «…чем компенсируются огромные силы, приложенные к головке бедренной кости» [Янсон Х.Я., 1975]. Развитие электромиографии позволило установить, что в середине и конце одноопорного периода шага биоэлектрическая активность средней ягодичной мышцы, а значит, и развиваемое ею усилие, снижается [Vaughan C.L. et al., 1992]. Логично предположить, что инерция веса тела, наклоняющегося с тазом в неопорную сторону, и действие приводящих мышц должны приводить к противоположному эффекту – повышению ее напряжения.

Противоречие между значительной расчетной нагрузкой, воздействующей на ГБК при ходьбе, и парадоксальной гипоактивностью средней ягодичной мышцы позволило нам предположить, что в одноопорном периоде шага часть действующих сил шунтируется связочным аппаратом ТБС. В связи с этим целью настоящего исследования явилось экспериментальное уточнение закономерностей биомеханики ходьбы и роли связок в одноопорном периоде шага.

Для более детального изучения роли СГБК, наружных связок и средней ягодичной мышцы нами изготовлена динамическая механическая модель ТБС [Архипов С.В., Заявка на изобретение №2009124926]. Она содержала подвижно закрепленную на основании с масштабно-координатной сеткой бедренную часть, снабженную сферической головкой, шарнирно сопряженную со сферической поверхностью вертлужного элемента тазовой части. Бедренная и тазовая части соединялись двумя динамометрами, снабженными элементами крепления с переменной длинной и электромеханическими приводами. Одно устройство для измерения силы имитировало среднюю ягодичную мышцу, второе воспроизводило действие комплекса коротких мышц, вращающих бедро кнаружи. Модель также содержала аналоги наружных связок ТБС и СГБК, выполненных из гибкого стального проволочного троса диаметром 2 мм. Аналог СГБК соединял дно фасонной выточки, выполненной на внутренней поверхности вертлужного элемента, с точкой на головке бедренной части модели, соответствующей ямке ГБК. С основанием соединялись две вертикально расположенные плоские поверхности с нанесенной на них масштабно-координатной сеткой. В точке, расположенной выше, кзади и медиальнее центра шарнира, модели подвешивалась на цепи нагрузка 1 кг, которая была снабжена тремя узконаправленными источниками света, проецировавшими лучи на масштабно-координатные сетки. Свойства модели изучены при отсутствии аналога СГБК, наружных связках и аналогов мышц, а также при их наличии в различных сочетаниях. Имитированы все возможные вращательные и поступательные движения в шарнире модели, уточнен их объем и элементы ограничители. При наличии и отсутствии тазовой части изучено перемещение СГБК при различных движениях в шарнире модели. Воспроизведены условия равновесия таза во фронтальной и сагиттальной плоскости при ненапряженном и напряженном типе одноопорного ортостатического положения [Архипов С.В., 2008].

С целью моделирования одноопорного периода шага бедренная часть устанавливалась в позиции приведения 10° с ротацией кнаружи 10°. Тазовой части придавалось положение, характерное для таза в начале одноопорного периода шага, и фиксировалось посредством натяжения аналогов мышц. Затем запускались электроприводы, удлиняющие элементы крепления аналогов мышц, фиксировались показания динамометров, направление и величины перемещений тазовой части. В заключении соединение бедренной части модели с основанием деблокировалось в сагиттальной плоскости и отслеживались возникающие спонтанные движения.

В исходном положении бедро согнуто в ТБС и развернуто кнаружи. При этом СГБК отклонена от вертикального положения и предварительно натянута. Таз находится приблизительно в нейтральной позиции во фронтальной плоскости. В начале одноопорного периода шага таз начинает опускаться вниз, а в ТБС наблюдается приведение. При этом СГБК натягивается. Сила реакции СГБК и суставных поверхностей, взаимодействуя с весом тела, приводят к появлению вращающего момента, за счет которого таз разворачивается по дуге кпереди. Данное движение притормаживается наружными ротаторами и поддерживается внутренними ротаторами ТБС. Наклон неопорной половины таза вниз и нарастающее приведение в ТБС обуславливают увеличение плеча веса тела, что приводит к увеличению биоэлектрической активности средней ягодичной мышцы, необходимой также для удержания таза от опрокидывания в неопорную сторону. При достижении значимого натяжения СГБК она начинает шунтировать нагрузку веса тела, объясняющее известное снижение биоэлектрической активности средней ягодичной мышцы. Натяжение СГБК трансформирует ТБС в аналог рычага второго рода. Благодаря этому результирующая сила, действующая на ГБК, более равномерно распределяется по верхней и нижней суставной поверхности и составляет для каждой из них, по нашим расчетам, около одного веса тела. Кроме этого, СГБК стабилизирует тазобедренный сустав во фронтальной плоскости. В середине одноопорного периода шага в ТБС наблюдается разгибание, что приводит к натяжению подвздошно-бедренной связки и замыканию ТБС в сагиттальной плоскости, повышающее стабильность тела в сагиттальной плоскости.

Колебательное движение таза, «подвешенного» на СГБК, обуславливает перемещение центра масс тела вперед – кнаружи по дуге и приводит к тому, что его проекция оказывается кпереди от центра голеностопного сустава опорной ноги. При этом появляется сила, которая выводит тело из равновесия и вызывает его падение вперед по дуге с центром качания в упомянутом суставе. Качание таза на СГБК и тела в целом на выпрямленной ноге аналогичны движениям математического маятника, частота колебаний которого зависит от длины подвеса (штока) и ускорения свободного падения [Киттель Ч. и др., 1971]. В отношении опорно-двигательного аппарата данные параметры постоянны. Соответственно, указанные движения сегментов тела совершаются с постоянной частотой, которая может изменяться только вынуждающей силой, например, дополнительным мышечным усилием с иной периодичностью. Качание таза на СГБК придает общему центру масс тела ускорение, направленное вверх, что уменьшает вертикальную составляющую реакции опоры в средине одноопорного периода шага. Благодаря описанным механизмам ходьба обретает известную ритмичность, а также снижаются затраты энергии на реализацию цикла шага. 

Автор:

Архипов С.В.

Полесская центральная районная больница, г. Полесск, Калининградская область, Россия

Ключевые слова:

тазобедренный сустав, эксперимент, модель, биомеханика, наружные связки, ligamentum capitis femoris, связка головки бедра, круглая связка 

Цитирование:

Архипов СВ. Роль связок тазобедренного сустава в одноопорном периоде шага (экспериментальное исследование). Труды научно-практической конференции «Реабилитация при патологии опорно-двигательного аппарата», Москва 4-5 марта 2011 года. Тезисы докладовМосква, 2011:9-10.

Примечания:

Публикация посвящена изучению на динамической механической модели тазобедренного сустава функционирования наружных связок и ligamentum capitis femoris при ходьбе.

СОДЕРЖАНИЕ РЕСУРСА

 Эксперименты и наблюдения

Популярные статьи

Публикации о LCF в 2025 году (Март)

  Публикации о LCF в 2025 году (Март):  Статьи и книги с упоминанием LCF опубликованные в марте 2025 года. Matsushita, Y., Sugiyama, H., Hayama, T., Sato, R., & Saito, M. (2025). Long-term Outcome of Pediatric Arthroscopic Surgery for Avulsion Fracture of the Ligamentum Teres: A Case Report.  JBJS Case Connector ,  15 (1), e25.   [i]      journals.lww.com   Arkhipov, S. V. (2025).  Inferior Portal for Hip Arthroscopy: A Pilot Experimental Study. Pt. 2. Inferior Portal Prototypes.  About Round Ligament of Femur . February   26, 2025.   [ii]    researchgate . net   Pfirrmann, C. W., & Kim, Y. J. (2025). Advanced Imaging. In  Surgical Hip Dislocation: A Comprehensive Approach to Modern Hip Surgery  (pp. 29-42). Cham: Springer Nature Switzerland.   [iii]      link.springer.com   Singh, R., & Yadav, N. (2025). Morphometry and Morphology of the Fovea Ca...

Моделирование взаимодействия LCF нормальной длины и отводящей группы мышц

  Моделирование взаимодействия LCF нормальной длины и отводящей группы мышц   С целью дальнейшего уточнения значения отводящей группы мышц для биомеханики тазобедренного сустава, articulatio coxae , мы изучили ее взаимодействие со связкой головки бедренной кости, ligamentum capitis femoris , нормальной длины. Аналог связки головки бедренной кости одним концом соединялся с моделью вертлужной впадины, будучи пропущенным через отверстие, расположенное на границы ямки и канавки фасонной выточки модели вертлужной впадины (Рис. 1). Рис. 1. Тазовая часть механической модели тазобедренного сустава птицы, через отверстие в фасонной выточке, лежащее на границе ямки (круглого углубления) и канавки (продольного углубления) пропущен аналог связки головки бедренной кости; вид с латеральной стороны.     Другой конец аналога связки головки бедренной кости соединялся с бедренной частью модели после размещения тазовой части модели на головке бедренной части модели. Методика соеди...

Механическая модель с аналогом связки головки бедренной кости

  Механическая модель с аналогом связки головки бедренной кости   Для уточнения механической функции связки головки бедренной кости , ligamentum capitis femoris , применена ранее описанная трехмерная механическая модельтазобедренного сустава без аналогов наружных связок. В качестве аналога связки головки бедренной кости , ligamentum capitis femoris , использован плетеный капроновый шнур диаметром 5 мм. Одним концом он соединялся с моделью вертлужной впадины тазовой части модели, будучи пропущенным, через одно из отверстий в ее фасонной выточке. Изначально мы пропустили аналог связки головки бедренной кости через отверстие, выполненное в центре фасонной выточки модели вертлужной впадины. Это, по нашей мысли, моделировало прикрепление связки к дну ямки вертлужной впадины (Рис. 1).   Рис. 1. Тазовая часть механической модели тазобедренного сустава, через центральное отверстие в фасонной выточке пропущен аналог связки головки бедренной кости (вид с латеральной сторо...

Моделирование взаимодействия удлиненной LCF и отводящей группы мышц

  Моделирование взаимодействия удлиненной LCF и отводящей группы мышц В настоящей серии экспериментов на трехмерной механической модели тазобедренного сустава, мы еще больше уд линили часть аналога связки головки бедренной кости, которая располагалась внутри шарнира – аналоге вертлужного канала. Для этого аналог связки головки бедренной кости одним концом он соединялся с моделью вертлужной впадины, будучи пропущенным, через отверстие в канавке фасонной выточке. При этом область крепления располагалась на расстоянии 25 мм от наружного края модели вертлужной впадины (Рис. 1). Рис. 1. Тазовая часть механической модели тазобедренного сустава через отверстие в канавке фасонной выточки, лежащим на расстоянии 25 мм от наружного края, пропущен аналог связки головки бедренной кости (вид с латеральной стороны).   В данном случае смоделировано крепление проксимального конца связки головки бедренной кости, ligamentum capitis femoris , в середине вырезки вертлужной впадины, incisur...

УЧЕНИЕ О LCF

уЧЕНИЕ   О   ligamentum capitis femoris:   Инструмент познания и инноваций. Определение: Совокупность теоретических положений о всех аспектах знаний об анатомическом элементе  ligamentum   capitis   femoris   ( LCF ).   1. Структура Учения о LCF 2. Практическое приложение Учения о LCF: 2.1. Диагностика 2.1. Певенция   2.3. Прогноз 2.4. Патология 2.5. Ветеринария   2.6. Профессии     2.7. Изделия     2.8. Хирургия   3. Теория Механики LCF    4. Фундамент Учения о LCF 5. Лестница в прошлое или История Учения о LCF 6. Предельная глубина исследований   7. Приложения 7.1. Допустимые синонимы названия     Структура  УЧЕНИя    О   ligamentum  capitis  femoris .       З     Е     М                   Л                       Л   ...