К основному контенту

НОВЫЕ ПУБЛИКАЦИИ

  Н ОВЫЕ ПУБЛИКАЦИИ РЕСУРСА      11 .05.2025 ПОСТУЛАТЫ МЕХАНИКИ LCF   Публикация в группе faceboo k.  17c.SchedoniB Картина . Изображение обстоятельств и механизма травмы LCF.  17c.ScarsellinoI   Картина . Изображение обстоятельств и механизма травмы LCF.  19c.NovelliPA  Гравюра. Изображение обстоятельств и механизма травмы LCF.  ок.1963ShagalM Картина. Изображение обстоятельств и механизма травмы LCF.  1650RicchiP  Картина. Изображение обстоятельств и механизма травмы LCF.  18c.FontebassoF Картина. Изображение обстоятельств и механизма травмы LCF. 1837VonSteinleE  Картина. Изображение обстоятельств и механизма травмы LCF. 1561DelauneE   Гравюра. Изображение обстоятельств и механизма травмы LCF.  17c.RicciS   Картина. Изображение обстоятельств и механизма травмы LCF. 1 0.05.2025 Комбинированная модель с аналогом LCF   Публикация в группе faceboo k.  14в.Церковь_Хора . Фреска. Изображен...

Роль связок тазобедренного сустава в одноопорном периоде шага (экспериментальное исследование)


Роль связок тазобедренного сустава в одноопорном периоде шага (экспериментальное исследование)

Архипов С.В.

Согласно современным представлениям о биомеханике ходьбы, продвижение тела вперед обусловлено действием мышц и эффектом «свободного падения» [Скворцов Д.В., 2007]. Мышцы контролируют баланс, стабилизируют тазобедренный сустав (ТБС) и тормозят движения в нем [Winter D.A., 1990]. Вместе с тем роль связочного аппарата ТБС в его биомеханике изучена недостаточно. Имеются лишь отрывочные данные о значимости наружных связок: замыкании ТБС при разгибании в нем за счет натяжения подвздошно-бедренной связки при ходьбе [Perry J., 1992]. В работах последнего времени отмечается, что и связка головки бедренной кости (СГБК) является важным стабилизатором бедра, но ее роль в одноопорном периоде шага не обсуждается [Cerezal L. et al., 2010].

При ходьбе мышцам отдается безусловный приоритет. Так считается, что в одноопорном периоде шага таз во фронтальной плоскости удерживается усилием отводящей группы мышц [Pauwels F., 1965, 1980; Bombelli R., 1993]. При этом ТБС представляет собой аналог рычага первого рода, точкой опоры которого является головка бедренной кости (ГБК) [Lehmkuhl L., Smith L.K., 1984]. Расчеты, в основу которых положена эта «классическая» концепция, свидетельствуют, что во время ходьбы нагрузка на ГБК может достигать шестикратного веса тела [Paul J.P., 1965]. При этом отдельные исследователи закономерно задавали вопрос: «…чем компенсируются огромные силы, приложенные к головке бедренной кости» [Янсон Х.Я., 1975]. Развитие электромиографии позволило установить, что в середине и конце одноопорного периода шага биоэлектрическая активность средней ягодичной мышцы, а значит, и развиваемое ею усилие, снижается [Vaughan C.L. et al., 1992]. Логично предположить, что инерция веса тела, наклоняющегося с тазом в неопорную сторону, и действие приводящих мышц должны приводить к противоположному эффекту – повышению ее напряжения.

Противоречие между значительной расчетной нагрузкой, воздействующей на ГБК при ходьбе, и парадоксальной гипоактивностью средней ягодичной мышцы позволило нам предположить, что в одноопорном периоде шага часть действующих сил шунтируется связочным аппаратом ТБС. В связи с этим целью настоящего исследования явилось экспериментальное уточнение закономерностей биомеханики ходьбы и роли связок в одноопорном периоде шага.

Для более детального изучения роли СГБК, наружных связок и средней ягодичной мышцы нами изготовлена динамическая механическая модель ТБС [Архипов С.В., Заявка на изобретение №2009124926]. Она содержала подвижно закрепленную на основании с масштабно-координатной сеткой бедренную часть, снабженную сферической головкой, шарнирно сопряженную со сферической поверхностью вертлужного элемента тазовой части. Бедренная и тазовая части соединялись двумя динамометрами, снабженными элементами крепления с переменной длинной и электромеханическими приводами. Одно устройство для измерения силы имитировало среднюю ягодичную мышцу, второе воспроизводило действие комплекса коротких мышц, вращающих бедро кнаружи. Модель также содержала аналоги наружных связок ТБС и СГБК, выполненных из гибкого стального проволочного троса диаметром 2 мм. Аналог СГБК соединял дно фасонной выточки, выполненной на внутренней поверхности вертлужного элемента, с точкой на головке бедренной части модели, соответствующей ямке ГБК. С основанием соединялись две вертикально расположенные плоские поверхности с нанесенной на них масштабно-координатной сеткой. В точке, расположенной выше, кзади и медиальнее центра шарнира, модели подвешивалась на цепи нагрузка 1 кг, которая была снабжена тремя узконаправленными источниками света, проецировавшими лучи на масштабно-координатные сетки. Свойства модели изучены при отсутствии аналога СГБК, наружных связках и аналогов мышц, а также при их наличии в различных сочетаниях. Имитированы все возможные вращательные и поступательные движения в шарнире модели, уточнен их объем и элементы ограничители. При наличии и отсутствии тазовой части изучено перемещение СГБК при различных движениях в шарнире модели. Воспроизведены условия равновесия таза во фронтальной и сагиттальной плоскости при ненапряженном и напряженном типе одноопорного ортостатического положения [Архипов С.В., 2008].

С целью моделирования одноопорного периода шага бедренная часть устанавливалась в позиции приведения 10° с ротацией кнаружи 10°. Тазовой части придавалось положение, характерное для таза в начале одноопорного периода шага, и фиксировалось посредством натяжения аналогов мышц. Затем запускались электроприводы, удлиняющие элементы крепления аналогов мышц, фиксировались показания динамометров, направление и величины перемещений тазовой части. В заключении соединение бедренной части модели с основанием деблокировалось в сагиттальной плоскости и отслеживались возникающие спонтанные движения.

В исходном положении бедро согнуто в ТБС и развернуто кнаружи. При этом СГБК отклонена от вертикального положения и предварительно натянута. Таз находится приблизительно в нейтральной позиции во фронтальной плоскости. В начале одноопорного периода шага таз начинает опускаться вниз, а в ТБС наблюдается приведение. При этом СГБК натягивается. Сила реакции СГБК и суставных поверхностей, взаимодействуя с весом тела, приводят к появлению вращающего момента, за счет которого таз разворачивается по дуге кпереди. Данное движение притормаживается наружными ротаторами и поддерживается внутренними ротаторами ТБС. Наклон неопорной половины таза вниз и нарастающее приведение в ТБС обуславливают увеличение плеча веса тела, что приводит к увеличению биоэлектрической активности средней ягодичной мышцы, необходимой также для удержания таза от опрокидывания в неопорную сторону. При достижении значимого натяжения СГБК она начинает шунтировать нагрузку веса тела, объясняющее известное снижение биоэлектрической активности средней ягодичной мышцы. Натяжение СГБК трансформирует ТБС в аналог рычага второго рода. Благодаря этому результирующая сила, действующая на ГБК, более равномерно распределяется по верхней и нижней суставной поверхности и составляет для каждой из них, по нашим расчетам, около одного веса тела. Кроме этого, СГБК стабилизирует тазобедренный сустав во фронтальной плоскости. В середине одноопорного периода шага в ТБС наблюдается разгибание, что приводит к натяжению подвздошно-бедренной связки и замыканию ТБС в сагиттальной плоскости, повышающее стабильность тела в сагиттальной плоскости.

Колебательное движение таза, «подвешенного» на СГБК, обуславливает перемещение центра масс тела вперед – кнаружи по дуге и приводит к тому, что его проекция оказывается кпереди от центра голеностопного сустава опорной ноги. При этом появляется сила, которая выводит тело из равновесия и вызывает его падение вперед по дуге с центром качания в упомянутом суставе. Качание таза на СГБК и тела в целом на выпрямленной ноге аналогичны движениям математического маятника, частота колебаний которого зависит от длины подвеса (штока) и ускорения свободного падения [Киттель Ч. и др., 1971]. В отношении опорно-двигательного аппарата данные параметры постоянны. Соответственно, указанные движения сегментов тела совершаются с постоянной частотой, которая может изменяться только вынуждающей силой, например, дополнительным мышечным усилием с иной периодичностью. Качание таза на СГБК придает общему центру масс тела ускорение, направленное вверх, что уменьшает вертикальную составляющую реакции опоры в средине одноопорного периода шага. Благодаря описанным механизмам ходьба обретает известную ритмичность, а также снижаются затраты энергии на реализацию цикла шага. 

Автор:

Архипов С.В.

Полесская центральная районная больница, г. Полесск, Калининградская область, Россия

Ключевые слова:

тазобедренный сустав, эксперимент, модель, биомеханика, наружные связки, ligamentum capitis femoris, связка головки бедра, круглая связка 

Цитирование:

Архипов СВ. Роль связок тазобедренного сустава в одноопорном периоде шага (экспериментальное исследование). Труды научно-практической конференции «Реабилитация при патологии опорно-двигательного аппарата», Москва 4-5 марта 2011 года. Тезисы докладовМосква, 2011:9-10.

Примечания:

Публикация посвящена изучению на динамической механической модели тазобедренного сустава функционирования наружных связок и ligamentum capitis femoris при ходьбе.

СОДЕРЖАНИЕ РЕСУРСА

 Эксперименты и наблюдения

Популярные статьи

2023АрхиповСВ. СВЯЗКА ГОЛОВКИ БЕДРЕННОЙ КОСТИ

  Монография:  Архипов СВ.  Связка головки бедренной кости: функция и роль в патогенезе коксартроза  (2023, 205 стр.) . Автор предлагает взаимовыгодное сотрудничество (50/50) по переводу на английский или родной язык. Предполагается коррекция машинного перевода и кооперация в редактировании. Требования к соавтору: 1. Носитель языка 2. Опыт писателя.  E-mail:  archipovsv(&)gmail.com   Аннотация Связка головки бедренной кости ( ligamentum capitis femoris , ligamentum teres ) – малоизвестное образование тела человека, поистине « ligamentum incognitum ». Предназначение этой структуры и ее роль в развитии болезней тазобедренного сустава до сих пор в полной мере не уточнены. Выполненные автором исследования показали, что связка головки бедренной кости – важная функциональная связь опорно-двигательной системы. В отдельных вертикальных позах и при ходьбе обсуждаемый анатомический элемент уменьшает давление на верхнюю часть головки бедра, стопорит тазоб...

Рассуждение о морфомеханике. Содержание

  Архипов-Балтийский С.В. Рассуждение о морфомеханике. Норма: В 2-х томах. – Калининград, 2004. – 820 с., ил. (электронная версия 1.5, исправленная и дополненная). Содержит 15 таблиц, 340 иллюстраций, библиография - 885 названий. В книге рассмотрены вопросы, касающиеся функции связки головки бедра и значения механического фактора для живых систем. Освещены статика и динамика опорно-двигательной системы человека. Обозначено новое научное направление – морфомеханика, представлен ее понятийный и математический аппарат. Книга рассчитана на широкий круг врачей, преимущественно травматологов-ортопедов, а также хирургов, биомехаников, ревматологов, реабилитологов, рентгенологов, морфологов, биологов.   Работа, написанная двадцать лет назад, остается актуальной до сих пор. Печатная версия книги имеется в Российской национальной библиотеке ( primo.nlr.ru ) и Российской государственной библиотеке ( aleph.rsl.ru ). Содержание   Предисловие автора ,  14 Список принятых сокращени...

СОДЕРЖАНИЕ РЕСУРСА

  LCF –  ключ к грациозной походке, выяснению причин болезней тазобедренного сустава и опровержению мифов о них. Мы представляем перспективное научное знание, необходимое для сбережения здоровья, разработки  имплантов и  новых способов лечения дегенеративно-дистрофических заболеваний тазобедренного сустава. Цель проекта: содействие сохранению нормальной походки и качества жизни, помощь в изучении механики  тазобедренного сустава, разработке эффективных способов лечения его болезней и травм.   СОДЕРЖАНИЕ  РЕСУРСА  БИБЛЕЙСКАЯ ТРАВМА (Художники и скульпторы о повреждении  LCF,   описанном в Библии: картины, скульптуры, иконы…) 1000Jacob&Archangel.  Фреска. Изображение обстоятельств и механизма травмы LCF. 17c.PatelP.  Картина. Изображение обстоятельств и механизма травмы LCF. 17c.OvensJ.  Картина. Изображение обстоятельств и механизма травмы LCF. 1639BreenberghB.  Картина. Изображение о...

2023АрхиповСВ. Публикации, объем и структура работы

  Монография: Архипов СВ. Связка головки бедренной кости: функция и роль в патогенезе коксартроза (2023). Приложения.  Публикации по теме диссертации   По теме диссертации опубликовано 15 печатных работ, в том числе две статьи в журналах, включенных в перечень ведущих рецензируемых изданий, рекомендованных ВАК РФ; получен патент РФ на изобретение.   Объем и структура работы   Диссертация изложена на 138 страницах текста и состоит из введения, обзора литературы, трех глав, заключения, выводов, практических рекомендаций и списка использованной литературы, включающего 200 источников (99 отечественных и 101 зарубежных), иллюстрирована 27 рисунками, 26 таблицами и диаграммой.  ««назад  ||  СОДЕРЖАНИЕ КНИГИ  ||  вперед»» Автор Архипов С.В. –  кандидат медицинских наук, врач-хирург, травматолог-ортопед. Цитирование Архипов С.В. Связка головки бедренной кости: функция и роль в патогенезе коксартроза; 2-ое изд., испр. и доп. Йоэнсуу: Издание...

ПОЭЗИЯ О БИБЛЕЙСКОЙ ТРАВМЕ LCF

  Поэтические произведения, напоминающие об эпизоде библейской травмы ligamentum capitis femoris. Тематический Интернет-журнал О круглой связке бедра Апрель, 2025   поЭзИЯ О Библейской травмЕ ligamentum capitis femoris С.В. Архипов   Древнейшее описание обстоятельств и механизма травмы ligamentum capitis femoris (LCF) содержится в книге «Берешит» (Бырэйшит), что значит «В начале». Произведение является первой частью «Торы» (Закон, Учение), ключевого текста иудаизма. В разделе «Ваишлах» мы читаем: «23 И встал он в ту ночь, и взял двух жен своих и двух рабынь своих, и одиннадцать детей своих, и перешел через Яббок вброд. 24 И взял их, и перевел через поток, и перевел то, что у него. 25 И остался Яаков один. И боролся человек с ним до восхода зари, 26 И увидел, что не одолевает его, и коснулся сустава бедра его, и вывихнулся сустав бедра Яакова, когда он боролся с ним. 27 И сказал: отпусти меня, ибо взошла заря. Но он сказал: не отпущу тебя, пока не благословишь меня. 28 И с...