К основному контенту

НОВЫЕ ПУБЛИКАЦИИ в 2026 г.

    Н ОВЫЕ ПУБЛИКАЦИИ РЕСУРСА в 2026 г.  Начальный этап сбора сведений о LCF , накопленный до 20-го века, в целом завершен. Далее планируется анализ и синтез тематической информации, с добавлением сведений 20-21-го века. Работа будет сосредоточена прежде всего на: профилактике, диагностике, артроскопии, пластике, эндопротезировании. 05 .01.2026 2018YoussefAO .   В статье описан способ укорочения LCF при врожденном вывихе бедра. 2007WengerD_OkaetR .  А вторы в эксперименте показали, что прочность LCF достаточна для обеспечения ранней стабильности при реконструкции тазобедренного сустава у детей. 04 .01.2026 2008BacheCE_TorodeIP.   В статье описан способ транспозиции проксимального крепления LCF при врожденном вывихе бедра.   2021PaezC_WengerDR . В статье проанал изированы результаты открытой реконструкция LCF при дисплазии.  2008DoddsMK_McCormackD . В статье описан эксперимент реконструкции LCF у свиней с формированием бедренного туннеля....

Роль связок тазобедренного сустава в одноопорном периоде шага (экспериментальное исследование)


Роль связок тазобедренного сустава в одноопорном периоде шага (экспериментальное исследование)

Архипов С.В.

Согласно современным представлениям о биомеханике ходьбы, продвижение тела вперед обусловлено действием мышц и эффектом «свободного падения» [Скворцов Д.В., 2007]. Мышцы контролируют баланс, стабилизируют тазобедренный сустав (ТБС) и тормозят движения в нем [Winter D.A., 1990]. Вместе с тем роль связочного аппарата ТБС в его биомеханике изучена недостаточно. Имеются лишь отрывочные данные о значимости наружных связок: замыкании ТБС при разгибании в нем за счет натяжения подвздошно-бедренной связки при ходьбе [Perry J., 1992]. В работах последнего времени отмечается, что и связка головки бедренной кости (СГБК) является важным стабилизатором бедра, но ее роль в одноопорном периоде шага не обсуждается [Cerezal L. et al., 2010].

При ходьбе мышцам отдается безусловный приоритет. Так считается, что в одноопорном периоде шага таз во фронтальной плоскости удерживается усилием отводящей группы мышц [Pauwels F., 1965, 1980; Bombelli R., 1993]. При этом ТБС представляет собой аналог рычага первого рода, точкой опоры которого является головка бедренной кости (ГБК) [Lehmkuhl L., Smith L.K., 1984]. Расчеты, в основу которых положена эта «классическая» концепция, свидетельствуют, что во время ходьбы нагрузка на ГБК может достигать шестикратного веса тела [Paul J.P., 1965]. При этом отдельные исследователи закономерно задавали вопрос: «…чем компенсируются огромные силы, приложенные к головке бедренной кости» [Янсон Х.Я., 1975]. Развитие электромиографии позволило установить, что в середине и конце одноопорного периода шага биоэлектрическая активность средней ягодичной мышцы, а значит, и развиваемое ею усилие, снижается [Vaughan C.L. et al., 1992]. Логично предположить, что инерция веса тела, наклоняющегося с тазом в неопорную сторону, и действие приводящих мышц должны приводить к противоположному эффекту – повышению ее напряжения.

Противоречие между значительной расчетной нагрузкой, воздействующей на ГБК при ходьбе, и парадоксальной гипоактивностью средней ягодичной мышцы позволило нам предположить, что в одноопорном периоде шага часть действующих сил шунтируется связочным аппаратом ТБС. В связи с этим целью настоящего исследования явилось экспериментальное уточнение закономерностей биомеханики ходьбы и роли связок в одноопорном периоде шага.

Для более детального изучения роли СГБК, наружных связок и средней ягодичной мышцы нами изготовлена динамическая механическая модель ТБС [Архипов С.В., Заявка на изобретение №2009124926]. Она содержала подвижно закрепленную на основании с масштабно-координатной сеткой бедренную часть, снабженную сферической головкой, шарнирно сопряженную со сферической поверхностью вертлужного элемента тазовой части. Бедренная и тазовая части соединялись двумя динамометрами, снабженными элементами крепления с переменной длинной и электромеханическими приводами. Одно устройство для измерения силы имитировало среднюю ягодичную мышцу, второе воспроизводило действие комплекса коротких мышц, вращающих бедро кнаружи. Модель также содержала аналоги наружных связок ТБС и СГБК, выполненных из гибкого стального проволочного троса диаметром 2 мм. Аналог СГБК соединял дно фасонной выточки, выполненной на внутренней поверхности вертлужного элемента, с точкой на головке бедренной части модели, соответствующей ямке ГБК. С основанием соединялись две вертикально расположенные плоские поверхности с нанесенной на них масштабно-координатной сеткой. В точке, расположенной выше, кзади и медиальнее центра шарнира, модели подвешивалась на цепи нагрузка 1 кг, которая была снабжена тремя узконаправленными источниками света, проецировавшими лучи на масштабно-координатные сетки. Свойства модели изучены при отсутствии аналога СГБК, наружных связках и аналогов мышц, а также при их наличии в различных сочетаниях. Имитированы все возможные вращательные и поступательные движения в шарнире модели, уточнен их объем и элементы ограничители. При наличии и отсутствии тазовой части изучено перемещение СГБК при различных движениях в шарнире модели. Воспроизведены условия равновесия таза во фронтальной и сагиттальной плоскости при ненапряженном и напряженном типе одноопорного ортостатического положения [Архипов С.В., 2008].

С целью моделирования одноопорного периода шага бедренная часть устанавливалась в позиции приведения 10° с ротацией кнаружи 10°. Тазовой части придавалось положение, характерное для таза в начале одноопорного периода шага, и фиксировалось посредством натяжения аналогов мышц. Затем запускались электроприводы, удлиняющие элементы крепления аналогов мышц, фиксировались показания динамометров, направление и величины перемещений тазовой части. В заключении соединение бедренной части модели с основанием деблокировалось в сагиттальной плоскости и отслеживались возникающие спонтанные движения.

В исходном положении бедро согнуто в ТБС и развернуто кнаружи. При этом СГБК отклонена от вертикального положения и предварительно натянута. Таз находится приблизительно в нейтральной позиции во фронтальной плоскости. В начале одноопорного периода шага таз начинает опускаться вниз, а в ТБС наблюдается приведение. При этом СГБК натягивается. Сила реакции СГБК и суставных поверхностей, взаимодействуя с весом тела, приводят к появлению вращающего момента, за счет которого таз разворачивается по дуге кпереди. Данное движение притормаживается наружными ротаторами и поддерживается внутренними ротаторами ТБС. Наклон неопорной половины таза вниз и нарастающее приведение в ТБС обуславливают увеличение плеча веса тела, что приводит к увеличению биоэлектрической активности средней ягодичной мышцы, необходимой также для удержания таза от опрокидывания в неопорную сторону. При достижении значимого натяжения СГБК она начинает шунтировать нагрузку веса тела, объясняющее известное снижение биоэлектрической активности средней ягодичной мышцы. Натяжение СГБК трансформирует ТБС в аналог рычага второго рода. Благодаря этому результирующая сила, действующая на ГБК, более равномерно распределяется по верхней и нижней суставной поверхности и составляет для каждой из них, по нашим расчетам, около одного веса тела. Кроме этого, СГБК стабилизирует тазобедренный сустав во фронтальной плоскости. В середине одноопорного периода шага в ТБС наблюдается разгибание, что приводит к натяжению подвздошно-бедренной связки и замыканию ТБС в сагиттальной плоскости, повышающее стабильность тела в сагиттальной плоскости.

Колебательное движение таза, «подвешенного» на СГБК, обуславливает перемещение центра масс тела вперед – кнаружи по дуге и приводит к тому, что его проекция оказывается кпереди от центра голеностопного сустава опорной ноги. При этом появляется сила, которая выводит тело из равновесия и вызывает его падение вперед по дуге с центром качания в упомянутом суставе. Качание таза на СГБК и тела в целом на выпрямленной ноге аналогичны движениям математического маятника, частота колебаний которого зависит от длины подвеса (штока) и ускорения свободного падения [Киттель Ч. и др., 1971]. В отношении опорно-двигательного аппарата данные параметры постоянны. Соответственно, указанные движения сегментов тела совершаются с постоянной частотой, которая может изменяться только вынуждающей силой, например, дополнительным мышечным усилием с иной периодичностью. Качание таза на СГБК придает общему центру масс тела ускорение, направленное вверх, что уменьшает вертикальную составляющую реакции опоры в средине одноопорного периода шага. Благодаря описанным механизмам ходьба обретает известную ритмичность, а также снижаются затраты энергии на реализацию цикла шага. 

Автор:

Архипов С.В.

Полесская центральная районная больница, г. Полесск, Калининградская область, Россия

Ключевые слова:

тазобедренный сустав, эксперимент, модель, биомеханика, наружные связки, ligamentum capitis femoris, связка головки бедра, круглая связка 

Цитирование:

Архипов СВ. Роль связок тазобедренного сустава в одноопорном периоде шага (экспериментальное исследование). Труды научно-практической конференции «Реабилитация при патологии опорно-двигательного аппарата», Москва 4-5 марта 2011 года. Тезисы докладовМосква, 2011:9-10.

Примечания:

Публикация посвящена изучению на динамической механической модели тазобедренного сустава функционирования наружных связок и ligamentum capitis femoris при ходьбе.

СОДЕРЖАНИЕ РЕСУРСА

 Эксперименты и наблюдения

Популярные статьи

УЛУЧШЕНИЕ ПОСЛЕОПЕРАЦИОННОГО КОМФОРТА...

  Улучшение послеоперационного комфорта и повышение надежности тазобедренного протеза путем дополнения искусственными связками: Демонстрация концепции и прототип Архипов С.В.     Содержание [i]   Аннотация [ii]   Введение [iii]   Материал и методы [iv]   Результаты и обсуждение [v]   Статические испытания [vi]   Динамические испытания [vii]   Изготовление и тестирование прототипа [viii]   Заключение [ix]   Список литературы [x]   Приложение [i]   Аннотация Продемонстрирован принцип функционирования экспериментального тотального эндопротеза тазобедренного сустава с аналогами связок в одноопорных вертикальных позах и в середине одноопорного периода шага. Опыты проводились на специально сконструированном мехатронном испытательном стенде. Концепция важной роли связочного аппарата дополнительно проиллюстрирована набором демонстрационных механических моделей. Данные, полученные в экспериментах, позволили изготовить прототип...

1970MichaelsG_MatlesAL

      Содержание [i]   Аннотация [ii]   Перевод на русский [iii]   Цитирование [iv]   Источник и ссылки [v]   Примечания [vi]   Авторы и принадлежность [vii]   Ключевые слова [i]   Аннотация Аннотация статьи: Michaels G , Matles AL . The role of the ligamentum teres in congenital dislocation of the hip ( Роль круглой связки при врожденном вывихе бедра , 1970 ). Авторами предложена аналогия роли ligamentum capitis femoris ( LCF ) «контроль в виде шара и цепи» и отмечено, что она может спонтанно вправить врожденный вывих бедра. Оригинал на английском языке доступен по ссылке: 1970 MichaelsG _ MatlesAL . [ii]   Перевод на русский Цитата стр. 199 В литературе часто указывается, что круглая связка (ligamentum teres) может препятствовать поздней открытой репозиции врожденного вывиха бедра. В отдельных случаях сообщается об отсутствии круглой связки. Однако в большинстве случаев она гипертрофирована и удлинена. Наши совреме...

1994(a)АрхиповСВ

  Публикация описывает конструкцию субтотального эндопротеза тазобедренного сустава с аналогом ligamentum capitis femoris ( LCF ).   Однополюсной эндопротез тазобедренного сустава конструкции с.в. архипова Заявка на патент RU94038343A Изобретатель Сергей Васильевич Архипов 11.10.1994 Заявление подал С.В. Архипов 11.10.1994 Приоритет RU94038343/14А 20 августа 1996 г. Публикация RU94038343A. ФОРМУЛА ИЗОБРЕТЕНИЯ 1. Однополюсной эндопротез тазобедренного сустава конструкции С . В . Архипова , содержащий неподвижно соединенные посредством сопряженных конусных поверхностей съемную головку и ножку, выполненную в виде стержня, имеющего в дистальной части хвостовик, а в проксимальной части опорную площадку с закрепленной на ней под углом к продольной оси ножки шейкой, имеющей на конце конусную поверхность, соединенную с соответствующим конусным отверстием в съемной головке, отличающийся тем, что съемная головка содержит сквозное отверстие, через которое проходит гибкая искус...

1900BetheE

  Фрагменты книги Pollux J. Onomasticum (Именослов, 166-176) в редакции E. Bethe (1900). По-гречески автор называет ligamentum capitis femoris (LCF) «ἰσχίον», а понятие «связка» (жила) обозначает термином «νεῦρον / νεῦρα». Отрывок из Onomasticum, посвященный LCF, процитировал Giovanni Filippo Ingrassia ( 1603 IngrassiaeIP ). Наше краткое обсуждение смотри ниже. Перевод на английский доступен по ссылке: 1900BetheE , на латынь – 1706PolluxJ . Цитата 1. Βιβλίου   Β . 186-187 [ Grc ] καιλεῖται   δὲ   καὶ   τὸ   νεῦρον   τὸ   σ υνέχον   τὴν   κοτύλην   πρὸ σ  τὸν   μηρὸν   ἰ σ χίον .  ὁμώνυμον   δ ’  ἐ σ τιν   αύτῷ   καὶ   τὸ   ἄρθρον .  καὶ   τὸ   μὲν   [ τῇ ]  κοτύλῃ   [σ υνηρμο σ μένον ]  ὀ σ τοῦν   σ τρογγύλον   μηροῦ   κεφαλὴ ,  μηρὸ σ  δὲ   τὸ   ἁπ ὸ   το ύ το υ   μὲχρ ι γονάτων  μὲρο σ, …  ( и...

Эндопротез с LCF. Часть 1

  Эндопротезы с аналогом ligamentum capitis femoris как свидетельства смены парадигмы в артропластике: Систематический обзор Часть  1. История, материал и методы Архипов С.В., независимый исследователь, Йоенсуу, Финляндия