К основному контенту

НОВЫЕ ПУБЛИКАЦИИ

  Н ОВЫЕ ПУБЛИКАЦИИ РЕСУРСА     02 .12.2025 1751DuVerneyJG. Автор обсуждает топографию LCF , ее роль и повреждение при вывихах, используя редкий синоним ligament plat.  2025VertesichK_ChiariC.   Авторы обсуждают диагностику патологии LCF на основе рентгенологических и МРТ-данных. 01 .12.2025 Публикации о LCF в 2025 году (Ноябрь) .  Статьи и книги с упоминанием LCF опубликован ные в ноябре  2025 года.  30 .11.2025 Прочность LCF человека. Обзор.    Интернет-журнал "О КРУГЛОЙ СВЯЗКЕ БЕДРА", ноябрь 2025 28 .11.2025 Размер LCF челов ека. Обзор. 27 .11.2025 Форма LCF человека. Обзор. 26 .11.2025 Твердость LCF человека. Обзор. 25 .11.2025 Гибкость LCF челове ка. Обзор . 24 .11.2025 Упругость LCF человека. Обзор.   2008 GaoF _ MaH . Авторы исследуют эластичность LCF и сравнивают ее с аналогичным параметром подвздошно -бедренной связки. 23 .11.2025 Цвет LCF человека. Обзор.   Создан раздел  ХАРАКТЕРИСТИКИ И СВОЙСТВА  ...

Морфомеханика как основа создания информационно-диагностических систем

 

Морфомеханика как основа создания информационно-диагностических систем

Архипов С.В., Архипова Л.Н.

Все живое на Земле постоянно испытывает влияние внешних и внутренних механических сил. С учетом этого влияния живые системы сформировались в конкретные формы в филогенезе и в соответствии с ним изменяются в онтогенезе. Думается правомерным считать механическое воздействие таким же фактором внешней среды, как температура, влажность, освещенность. Данный фактор мы назвали механическим, определяя его как совокупность всех механических воздействий на живую систему. Механический фактор – постоянная и, пожалуй, наиболее значимая компонента окружающего материального мира.

Издавна человек научился фиксировать механические воздействия и сравнивать массы тел. Развитие электронно-вычислительной техники и нанотехнологий позволило не только регистрировать действующие механические силы, но и обрабатывать сигнал в реальном времени. Указанное предопределяет возможность создания компьютерных систем, способных отслеживать и измерять параметры механического фактора внешней, а также внутренней среды человека.

Общеизвестно, что механические воздействия способны влиять на форму и строение живых организмов, что до сих пор было принято рассматривать в рамках биомеханики. Однако, согласно известным определениям, под ее «юрисдикцию» не подпадает изучение влияния механического фактора на биологические процессы. Вместе с тем зачастую именно они обуславливают изменение формы, строения и функции живых систем. С нашей точки зрения, представляется целесообразным анализировать данные процессы в рамках морфомеханики. Данное научное направление определено нами как раздел биофизики, изучающий влияние механического фактора на биологические процессы, протекающие в живых системах. Основные положения морфомеханики:

1. Механический фактор является совокупностью всех механических воздействий на живую систему.

2. Механический фактор влияет на биологические процессы по закону биоиндукции, приводя к изменению формы, строения и функции живых систем.

3. Живые системы способны адаптироваться к уровню механического фактора в определенном интервале.

Не вызывает сомнений, что живые системы способны приспосабливаться к механическому фактору. Однако до сих пор было неизвестно, к какой именно характеристике механического фактора происходит адаптация. С нашей точки зрения, живые системы приспосабливаются к существующему в них уровню среднесуточных напряжений, способны их отслеживать и изменять (подробнее см. www. enet.ru /~archipov/). Из термина «среднесуточное напряжение» явствует, что это есть среднее напряжение, рассчитанное за сутки, которые являются оптимальным, наименьшим и наиболее стабильным из глобальных природных ритмов. Он существует на протяжении многих миллионов лет и, несомненно, участвует в эволюционном процессе. Для каждой точки, принадлежащей живой системе, существует некий оптимальный уровень среднесуточных напряжений. Он определяется механическим фактором. В соответствии с ним формируются и функционируют живые системы. При некоторых обстоятельствах уровень оптимальных среднесуточных напряжений может не совпадать с величиной фактических среднесуточных напряжений. Тогда между ними возникает разность, названная нами биоэффективным напряжением. Именно появление биоэффективных напряжений в органах и тканях живых систем индуцирует в них биологические процессы. Данное явление, названное нами биоиндукцией, наблюдается в норме и патологии во всех без исключения органных живых системах.

Зависимость между биоэффективными напряжениями и биологическими процессами определяется выявленной нами неизвестной ранее закономерностью. Она названа закон биоиндукции, который гласит: появляющиеся в живых системах биоэффективные напряжения, представляющие собой разность между фактическими и оптимальными среднесуточными напряжениями, индуцируют биологические процессы, нивелирующие их по принципу отрицательной обратной связи, а неликвидируемые биоэффективные напряжения приводят к повреждению живых систем. Предтече установленной закономерности можно считать «закон реконструирования кости» J. Wolff (1892), а также «общие законы анатомии» П.Ф. Лесгафта (1881).

При появлении биоэффективных напряжений живые системы стремятся их ликвидировать в пределах своих возможностей, определенных генотипом и функциональным состоянием. Уточнение характеристики механического фактора, влияющего на живые системы, дает отправную точку для вычисления того, как быстро они способны нивелировать биоэффективные напряжения. Данное ключевое понятие морфомеханики названо скорость биоиндукции и может быть найдена по формуле: vв = Dsв/Dt, где vв - скорость биоиндукции, Dt - интервал времени, в течение которого живая система изменила величину градиента биоэффективного напряжения Dsв. На базе вышеизложенных положений разработан понятийный и математический аппарат, позволяющий перевести биологию и медицину в разряд точных наук. Обрели дополнительное обоснование представления о биологическом поле, привнесенные в теоретическую биологию А.Г. Гурвичем (1912-1922). Появилась возможность рассчитывать и сравнивать этот параметр у различных видов живых систем.

Таким образом, морфомеханика вручает в руки врача и биолога новую методологию прогнозирования течения биологических процессов в норме и патологии. Создание на ее основе информационно-диагностических систем позволит с математической точностью предсказывать результаты лечения, а также морфогенез живых систем. 

Авторы:

Архипов Сергей Васильевич

Архипова Людмила Николаевна

Полесская центральная районная больница, г. Полесск, Калининградская область, Россия

Ключевые слова:

морфомеханика, закон биоиндукции, патогенез

Цитирование:

Архипов СВ, Архипова ЛН. Морфомеханика как основа создания информационно-диагностических систем. Комп'ютерна медицина 2007, Науково-практична конференція «Роль інформаційних технологій в реформуванні охорони здоров'я», 14-15 вересня 2007 року, м. Харків, Україна. Харьков, 2007. 

Примечания:

Публикация обсуждает основные понятия морфомеханики и закон биоиндукции позволяющий глубже понять процессы восстановления при заболеваниях тазобедренного сустава и патологии ligamentum capitis femoris, прогнозировать изменения с математической точностью. 

Сайт автора www. enet.ru / ~archipov «Морфомеханика» в настоящее время доступен в архиве [web.archive.org]

СОДЕРЖАНИЕ РЕСУРСА

 Биомеханика и морфомеханика

Популярные статьи

Твердость LCF человека. Обзор

   твердость  ligamentum capitis femoris человека .   Обзор Архипов С.В.     Содержание [i]   Резюме [ii]   Введение [iii]   Понятие твердости [iv]   Твердость биологических тканей [v]   Субъективные оценки твердости LCF [vi]   Объективное измерение твердости LCF  [vii]   Практическая оценка твердости LCF [viii]   Список литературы [ix]   Приложение [i]   Резюме Представлены сведения о твердости ligamentum capitis femoris ( LCF ) в норме и патологии у человека и некоторых животных. [ii]   Введение В конце 20-го века наш предметный анализ доступных источников информации, показал, что характеристики LCF недостаточно освещены даже в специальной литературе. При этом общее представление о роли и функции анатомического элемента возможно составить на основе сведений о его механических свойствах. Указанное подвигло заняться собственными научными изысканиями. Параллельно накапливались и анализировались ...

LCF пингвина. Часть 1

  ligamentum capitis femoris  пингвина . Часть 1 Архипов С.В.     Содержание [i]   Резюме [ii]   Общие сведения [iii]   LCF у птиц [iv]   Материал исследования [v]   Таз пингвина [vi]   Вертлужная впадина пингвина [vii]   Список литератур ы [viii]   Приложения [i]   Резюме Обсуждена систематика и общие сведения о пингвинах, а также представлен обзор костной анатомии таза с акцентом на проксимальную область крепления ligamentum capitis femoris ( LCF ). [ii]   Общие сведения Пингвины – водоплавающие птицы представители семейства пингвиновых ( Spheniscidae ), отряда пингвинообразных ( Sphenisciformes ), надотряда плавающих птиц ( Impennes ), подкласса настоящих птиц ( Neornithes ), класса птицы ( Aves ) (1979НаумовНП_КарташевНН). Семейство пингвиновые ( Spheniscidae ), включает шесть родов – императорские ( Aptenodytes ), хохлатые ( Eudyptes ), малые ( Eudyptula ), великолепные ( Megadyptes ), антарктические ( Pygosce...

Гибкость LCF человека. Обзор

  Гибкость ligamentum capitis femoris человека . Обзор Архипов С.В.       Содержание [i]   Резюме [ii]   Введение [iii]   Понятие гибкости [iv]   Ранние свидетельства о гибкости LCF [v]   Гибкость, пластичность, долговечность [vi]   Список литературы [vii]   Приложение [i]   Резюме Представлены основные сведения о гибкости ligamentum capitis femoris (LCF) человека  [ii]   Введение В конце 20-го века наш предметный анализ доступных источников информации, показал, что характеристики LCF недостаточно освещены даже в специальной литературе. При этом общее представление о роли и функции анатомического элемента возможно составить на основе сведений о его механических свойствах. Указанное подвигло заняться собственными научными изысканиями. Параллельно накапливались и анализировались мнения иных авторов. Этот процесс продолжается до сих пор. Здесь мы планируем собирать все значимые цитаты и мысли, касающиеся гибкости LCF ...

Размер LCF человека. Обзор

  размер ligamentum capitis femoris человека .   Обзор Архипов С.В.     Содержание [i]   Резюме [ii]   Введение [iii]   Античность и протоантичность [iv]   Средние века [v]   17-й век [vi]   18-й век [vii]   19-й век [viii]   20-й век [ix]   21-й век [x]   Оптимальные размеры [xi]   Список литературы [xii]   Приложение [i]   Резюме   Представлены сведения о размере ligamentum capitis femoris ( LCF ) в норме у человека. [ii]   Введение В конце 20-го века наш предметный анализ доступных источников информации, показал, что характеристики LCF недостаточно освещены даже в специальной литературе. При этом общее представление о роли и функции анатомического элемента возможно составить на основе сведений о его геометрических свойствах. Указанное подвигло заняться собственными научными изысканиями. Параллельно накапливались и анализировались мнения иных авторов. Этот процесс продолжается до сих пор...

Прочность LCF человека. Обзор

  прочность ligamentum capitis femoris человека .   Обзор Архипов С.В.     Содержание [i]   Резюме [ii]   Введение [iii]   Понятие прочности [iv]   Античность и протоантичность [v]   Средние века [vi]   17-й век [vii]   18-й век [viii]   19-й век [ix]   20-й век [x]   21-й век [xi]   Теоретическая прочность [xii]   Список литературы [xiii]   Приложение [i]   Резюме Представлены сведения о прочности ligamentum capitis femoris ( LCF ) в норме и патологии у человека и некоторых животных. [ii]   Введение В конце 20-го века наш предметный анализ доступных источников информации, показал, что характеристики LCF недостаточно освещены даже в специальной литературе. При этом общее представление о роли и функции анатомического элемента возможно составить на основе сведений о его механических свойствах. Указанное подвигло заняться собственными научными изысканиями. Параллельно накапливались и анализир...