К основному контенту

НОВЫЕ ПУБЛИКАЦИИ

  Н ОВЫЕ ПУБЛИКАЦИИ РЕСУРСА      05 .07.2025 Архипов СВ. О функции прижатия суставных поверхностей. Обзор , 2025. 04 .07.2025 16с.MostaertG_MolenaerC.   Картина. Изображение об стоятельств и механизма травмы LCF.  03 .07.2025 Архипов СВ.  КРИТИЧЕСКАЯ МАССА КОНСЕНСУСА :   МНЕНИЯ О ЗНАЧИМОСТИ  ligamentum   capitis   femoris   ( XX - XXI   ВЕК), 2025. 01 .07.2025 Публикации оLCF в 2025 году (Июнь) Статьи и книги с упоминанием LCF опубликованные в июне 2025 года. 30 .06.2025 Создан раздел  YOUTUBE   (публикации на автороском канале  Youtube )  Интернет-журнал "О КРУГЛОЙ СВЯЗКЕ БЕДРА", июнь 2025 29 .06.2025 1993 BaumelJ . Указаны области крепления LCF у птиц.  Крупнейшая LCF . Среди ныне живущих тетраподов крупнейшая LCF у саванной разновидности африканского слона.  Наименьшая LCF . Среди тетраподов наименьшая длина LCF у лягушки вида Paedophryne amauensis .  ЛЮБОПЫТНЫЕ ФАКТЫ О ДЛИ...

Морфомеханика как основа создания информационно-диагностических систем

 

Морфомеханика как основа создания информационно-диагностических систем

Архипов С.В., Архипова Л.Н.

Все живое на Земле постоянно испытывает влияние внешних и внутренних механических сил. С учетом этого влияния живые системы сформировались в конкретные формы в филогенезе и в соответствии с ним изменяются в онтогенезе. Думается правомерным считать механическое воздействие таким же фактором внешней среды, как температура, влажность, освещенность. Данный фактор мы назвали механическим, определяя его как совокупность всех механических воздействий на живую систему. Механический фактор – постоянная и, пожалуй, наиболее значимая компонента окружающего материального мира.

Издавна человек научился фиксировать механические воздействия и сравнивать массы тел. Развитие электронно-вычислительной техники и нанотехнологий позволило не только регистрировать действующие механические силы, но и обрабатывать сигнал в реальном времени. Указанное предопределяет возможность создания компьютерных систем, способных отслеживать и измерять параметры механического фактора внешней, а также внутренней среды человека.

Общеизвестно, что механические воздействия способны влиять на форму и строение живых организмов, что до сих пор было принято рассматривать в рамках биомеханики. Однако, согласно известным определениям, под ее «юрисдикцию» не подпадает изучение влияния механического фактора на биологические процессы. Вместе с тем зачастую именно они обуславливают изменение формы, строения и функции живых систем. С нашей точки зрения, представляется целесообразным анализировать данные процессы в рамках морфомеханики. Данное научное направление определено нами как раздел биофизики, изучающий влияние механического фактора на биологические процессы, протекающие в живых системах. Основные положения морфомеханики:

1. Механический фактор является совокупностью всех механических воздействий на живую систему.

2. Механический фактор влияет на биологические процессы по закону биоиндукции, приводя к изменению формы, строения и функции живых систем.

3. Живые системы способны адаптироваться к уровню механического фактора в определенном интервале.

Не вызывает сомнений, что живые системы способны приспосабливаться к механическому фактору. Однако до сих пор было неизвестно, к какой именно характеристике механического фактора происходит адаптация. С нашей точки зрения, живые системы приспосабливаются к существующему в них уровню среднесуточных напряжений, способны их отслеживать и изменять (подробнее см. www. enet.ru /~archipov/). Из термина «среднесуточное напряжение» явствует, что это есть среднее напряжение, рассчитанное за сутки, которые являются оптимальным, наименьшим и наиболее стабильным из глобальных природных ритмов. Он существует на протяжении многих миллионов лет и, несомненно, участвует в эволюционном процессе. Для каждой точки, принадлежащей живой системе, существует некий оптимальный уровень среднесуточных напряжений. Он определяется механическим фактором. В соответствии с ним формируются и функционируют живые системы. При некоторых обстоятельствах уровень оптимальных среднесуточных напряжений может не совпадать с величиной фактических среднесуточных напряжений. Тогда между ними возникает разность, названная нами биоэффективным напряжением. Именно появление биоэффективных напряжений в органах и тканях живых систем индуцирует в них биологические процессы. Данное явление, названное нами биоиндукцией, наблюдается в норме и патологии во всех без исключения органных живых системах.

Зависимость между биоэффективными напряжениями и биологическими процессами определяется выявленной нами неизвестной ранее закономерностью. Она названа закон биоиндукции, который гласит: появляющиеся в живых системах биоэффективные напряжения, представляющие собой разность между фактическими и оптимальными среднесуточными напряжениями, индуцируют биологические процессы, нивелирующие их по принципу отрицательной обратной связи, а неликвидируемые биоэффективные напряжения приводят к повреждению живых систем. Предтече установленной закономерности можно считать «закон реконструирования кости» J. Wolff (1892), а также «общие законы анатомии» П.Ф. Лесгафта (1881).

При появлении биоэффективных напряжений живые системы стремятся их ликвидировать в пределах своих возможностей, определенных генотипом и функциональным состоянием. Уточнение характеристики механического фактора, влияющего на живые системы, дает отправную точку для вычисления того, как быстро они способны нивелировать биоэффективные напряжения. Данное ключевое понятие морфомеханики названо скорость биоиндукции и может быть найдена по формуле: vв = Dsв/Dt, где vв - скорость биоиндукции, Dt - интервал времени, в течение которого живая система изменила величину градиента биоэффективного напряжения Dsв. На базе вышеизложенных положений разработан понятийный и математический аппарат, позволяющий перевести биологию и медицину в разряд точных наук. Обрели дополнительное обоснование представления о биологическом поле, привнесенные в теоретическую биологию А.Г. Гурвичем (1912-1922). Появилась возможность рассчитывать и сравнивать этот параметр у различных видов живых систем.

Таким образом, морфомеханика вручает в руки врача и биолога новую методологию прогнозирования течения биологических процессов в норме и патологии. Создание на ее основе информационно-диагностических систем позволит с математической точностью предсказывать результаты лечения, а также морфогенез живых систем. 

Авторы:

Архипов Сергей Васильевич

Архипова Людмила Николаевна

Полесская центральная районная больница, г. Полесск, Калининградская область, Россия

Ключевые слова:

морфомеханика, закон биоиндукции, патогенез

Цитирование:

Архипов СВ, Архипова ЛН. Морфомеханика как основа создания информационно-диагностических систем. Комп'ютерна медицина 2007, Науково-практична конференція «Роль інформаційних технологій в реформуванні охорони здоров'я», 14-15 вересня 2007 року, м. Харків, Україна. Харьков, 2007. 

Примечания:

Публикация обсуждает основные понятия морфомеханики и закон биоиндукции позволяющий глубже понять процессы восстановления при заболеваниях тазобедренного сустава и патологии ligamentum capitis femoris, прогнозировать изменения с математической точностью. 

Сайт автора www. enet.ru / ~archipov «Морфомеханика» в настоящее время доступен в архиве [web.archive.org]

СОДЕРЖАНИЕ РЕСУРСА

 Биомеханика и морфомеханика

Популярные статьи

КАТАЛОГ ЛИТЕРАТУРЫ О LCF

  Каталог литературы о LCF   (Библиографический разде: книги, статьи, ссылки, упоминания…) 21-й ВЕК https://kruglayasvyazka.blogspot.com/2024/10/21.html   20-й ВЕК https://kruglayasvyazka.blogspot.com/2024/10/20.html   19-й ВЕК https://kruglayasvyazka.blogspot.com/2024/10/19.html   18-й ВЕК https://kruglayasvyazka.blogspot.com/2024/10/18.html   17-й ВЕК https://kruglayasvyazka.blogspot.com/2024/10/17.html   16-й ВЕК https://kruglayasvyazka.blogspot.com/2024/10/16.html   11-15-й ВЕК https://kruglayasvyazka.blogspot.com/2024/10/11-15.html   1-10-й ВЕК https://kruglayasvyazka.blogspot.com/2024/10/1-10.html   Железный ВЕК (10 – 1-й век до совр. эры) https://kruglayasvyazka.blogspot.com/2024/10/blog-post_87.html   НЕОЛИТ И БРОНЗА (8,000 – 2,000 лет до совр. эры) https://kruglayasvyazka.blogspot.com/2024/10/8-2.html   СОДЕРЖАНИЕ РЕСУРСА КАТАЛОГИ И БИБЛИОГРАФИИ Учение о...

2025АрхиповСВ. ПОЧЕМУ ВОССТАНОВЛЕНИЕ ВЕРТЛУЖНОЙ ГУБЫ МОЖЕТ БЫТЬ НЕЭФФЕКТИВНО?

Тематический Интернет-журнал О круглой связке бедра Апрель, 2025 Почему восстановление вертлужной губы может быть НЕЭФФЕКТИВНО?: заметка о таинственной «темной материи» в тазобедренном суставе Архипов С.В., независимый исследователь, Йоенсуу, Финляндия Аннотация Восстановление и реконструкция вертлужной губы не предотвращает остеоартрит и нестабильность тазобедренного сустава при ходьбе в случае удлинения ligamentum capitis femoris . Заключение сделано на основании математических расчетов и анализа результатов экспериментов на механической модели. Ключевые слова: артроскопия, тазобедренный сустав, вертлужная губа, ligamentum capitis femoris, ligamentum teres, связка головки бедренной кости, реконструкция, восстановление Введение Почти 80% первичных артроскопий тазобедренного сустава включает восстановление вертлужной губы (2019 WestermannRW _ RosneckJT ). Реконструкция – наиболее распространенная процедура для устранения патологии вертлужной губы и при ревизионной артроскопии (2...

Публикации о LCF в 2025 году (Июнь)

  Публикации о LCF в 2025 году (Июнь)     Kuhns, B. D., Kahana-Rojkind, A. H., Quesada-Jimenez, R., McCarroll, T. R., Kingham, Y. E., Strok, M. J., ... & Domb, B. G. (2025). Evaluating a semiquantitative magnetic resonance imaging-based scoring system to predict hip preservation or arthroplasty in patients with an intact preoperative joint space. Journal of Hip Preservation Surgery , hnaf027.   [i]   academic.oup.com   Iglesias, C. J. B., García, B. E. C., & Valarezo, J. P. P. (2025) CONTROLLED GANZ DISLOCATION. EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal. 11(5)1410-13. DOI: 10.36713/epra2013   [ii]       researchgate.net   Guimarães, J. B., Arruda, P. H., Cerezal, L., Ratti, M. A., Cruz, I. A., Morimoto, L. R., ... & Ormond Filho, A. G. (2025). Hip Microinstability: New Concepts and Comprehensive Imaging Evaluation. RadioGraphics , 45 (7), e240134.   [ii...

КРИТИЧЕСКАЯ МАССА КОНСЕНСУСА

  Онлайн версия от 03.07.2025   КРИТИЧЕСКАЯ МАССА КОНСЕНСУСА: МНЕНИЯ О ЗНАЧИМОСТИ ligamentum capitis femoris ( XX - XXI ВЕК) Архипов С.В. Содержание [i]   Аннотация [ii]   Мнения [iii]   Авторы и принадлежность [iv]   Список литературы [v]   Приложение [i]   Аннотация В статье перманентно собираются мнения о важности ligamentum capitis femoris (LCF) для опорно-двигательной системы. Наша коллекция призвана показать происходящее кардинальное изменение текущего консенсуса в ортопедических и мышечно-скелетных исследовательских сообществах касательно значения LCF. Здесь убежденные убеждают других. В итоге нетрадиционная идея станет устоявшимся знанием, позволит произвести переворот в мышлении клиницистов и подходах к профилактике, диагностике и лечению патологии тазобедренного сустава. [ii]   Мнения 2025 LCF «… работает как вторичный статический стабилизатор бедра, действуя как стропа для предотвращения подвывиха головки бедренной...

Крупнейшая LCF

Онлайн версия от 29.06.2025   Крупнейшая  ligamentum   capitis   femoris Архипов С.В.     Содержание [i]   Аннотация [ii]   LCF современных слонов [iii]   LCF  у крупнейших вымерших видов [iv]   Список литературы [v]   Примечание [vi]   Приложение [i]    Аннотация Среди ныне живущих тетраподов крупнейшая ligamentum capitis femoris (LCF) у саванной разновидности африканского слона. Вероятно, самая большая LCF у вымерших животных имелась у Maraapunisaurus fragillimus (ранее Amphicoelias fragillimus) была больше, чем у современных слонов в 15-20 раз. [ii]   LCF современных слонов Сегодня наибольший тетрапод, имеющий тазобедренные суставы – саванная разновидность африканского слона (Loxodonta africana, Рис. 1).  Рисунок 1. Африканский слон, Московский зоопарк (Москва, фотография автора). Его масса составляет в среднем 4 – 7 тонн и рост 3.2 – 4.0 м (2000GrubbP_ShoshaniJ). Индийский слон (Elephas indica, Elep...