К основному контенту

НОВЫЕ ПУБЛИКАЦИИ

  Н ОВЫЕ ПУБЛИКАЦИИ РЕСУРСА:      01 .04 .2025 Публикации о LCF в 2025 году (Март)   Статьи и книги с упоминанием LCF опубликованные в марте 2025 года. 31 .03 .2025 Создан раздел  ИНТЕРНЕТ ЖУРНАЛ  для депонирования выпусков.  Интернет-журнал "О КРУГЛОЙ СВЯЗКЕ БЕДРА", март 2025. Второй  выпуск.  30 .03 .2025 2025АрхиповСВ. ДЕТИ ЧЕЛОВЕЧЕСКИЕ :  истоки библейских преданий в обозрении врача (2025). Эссе датирует написание книги Бытие, изображенные в ней события и упоминание LCF, а также опровергает авторство Ветхозаветного Моисея. 29 .03 .2025   С. Архипов против F . Pauwels ☺   Публикация в группе  facebook.  28 .03 .2025 Биомеханика тазобедренного сустава без LCF .  Публикация в группе  facebook.  27 .03 .2025 Наружные связки и LCF .  Публикация в группе  facebook.  26 .03 .2025 модель тазобедренного сустава с аналогом lcf .  Публикация в группе  facebook.  25...

К вопросу о патогенезе болезни Пертеса

 

К вопросу о патогенезе болезни Пертеса

Архипов-Балтийский С.В.

Цель исследования. Около века прошло с момента первого описания в научной литературе остеохондропатии головки бедра. За это время удалось достаточно подробно изучить клинику, рентгенологические и морфологические изменения, характерные для данного заболевания. Вместе с тем патогенез остеохондропатии головки бедра остается до сих пор окончательно не разрешенным. С нашей точки зрения, пусковым моментом в развитии болезни Пертеса является повреждение связки головки бедра с последующей перегрузкой и деформацией верхнего сектора головки бедра. Целью данной работы явилось экспериментальное обоснование перегрузки верхнего сектора головки бедра после повреждения связки головки бедра.

Материал и методы. Нами была создана оригинальная трехмерная модель тазобедренного сустава с аналогом связки головки бедра. Ее основой стал однополюсной эндопротез тазобедренного сустава конструкции Thompson, прикрепленный к кольцевидному основанию и имевший планку, имитирующую большой вертел. В соответствии с диаметром головки изготовлена металлическая модель вертлужной впадины в виде толстостенной сферической оболочки заодно с цилиндрическим стержнем и планкой, моделирующей крыло подвздошной кости. Внутри сферической оболочки выполнено фасонное углубление, напоминающее по размерам, а также форме ямку и вырезку вертлужной впадины. Головка и модель вертлужной впадины имели отверстия, соответствующие областям нормального прикрепления связки головки бедра. Для имитации функции отводящей группы мышц крайние отверстия планок бедренного и вертлужного компонентов соединялись бытовым динамометром (БПЦ-10-01). С целью моделирования действия веса тела в одноопорном ортостатическом положении к цилиндрическому стержню модели вертлужной впадины подвешивался груз массой 2 кг. После прекращения возникшего движения производилось считывание показаний прибора, которые в среднем составили 4 кг. Пружина динамометра удерживала модель вертлужной впадины от опрокидывания под действием груза. При этом результирующая нагрузка приходилась на верхний сектор головки. В качестве аналога связки головки бедра использован крученый капроновый шнур. Он пропускался через отверстия в модели вертлужной впадины и головке, после чего закреплялся. Длина расположенного в фасонном углублении аналога связки головки бедра выбиралась такова, чтоб он не ущемлялся между трущимися поверхностями и существенно не ограничивал движения. Было отмечено, что в результате добавления аналога связки головки бедра тазовая часть модели находилась в устойчивом равновесии и в отсутствии динамометра, а при его наличии стрелка устройства не отклонялась даже при подвешивании груза массой 2 кг.

Результаты и выводы. Ранее считалось, что в одноопорном ортостатическом положении и одноопорном периоде шага тазобедренный сустав функционирует как рычаг первого рода, а таз удерживается в горизонтальном положении только за счет отводящей группы мышц. При этом нагруженным является исключительно верхний сектор головки бедренной кости и вертлужной впадины. Принципиальную возможность этого доказывают и наши эксперименты на трехмерной модели без аналога связки головки бедра. Анализируя эксперименты на той же модели, но с аналогом связки головки бедра, установлено, что в ортостатическом положении с опорой на одну ногу и в средине одноопорного периода шага тазобедренный сустав функционирует как рычаг второго рода. Это обеспечивается за счет натяжения связки головки бедра, которая ограничивает приведение бедра, наклон таза в неопорную сторону и тем самым разгружает отводящую группу мышц. Благодаря связке головки бедра происходит замыкание тазобедренного сустава во фронтальной плоскости. При этом основная нагрузка приходится на нижние сектора головки бедренной кости и вертлужной впадины. Согласно нашим расчетам, в норме плечо силы реакции связки головки бедра относится к плечу веса тела как 1:3. Тогда результирующая сила (F3), воздействующая на нижний сектор головки, составляет в покое только удвоенный вес тела:

F3 = F2 - F1,

где F1 – вес тела, F2 – вертикальная составляющая силы реакции связки головки.

Как показывают клинические наблюдения и литературные данные, развитию остеохондропатии головки бедра зачастую предшествуют травма, иногда повышенная физическая нагрузка. С нашей точки зрения, при этом происходит полное или частичное повреждение связки головки бедра. В результате дисфункции связки головки бедра нагрузка постоянно воздействует только на верхний сектор головки бедра. Уровень среднесуточных напряжений в ней существенно повышается. Изнашивается хрящевой покров, происходит смятие костного вещества с последующей его перестройкой, деформацией головки бедра и вертлужной впадины. Позднее неизбежно развивается коксартроз. С нашей точки зрения, наблюдаемые рентгенологические и морфологические изменения – не что иное, как проявления адаптации тазобедренного сустава к физиологической нагрузке в детском возрасте при дисфункции связки головки бедра. В свете сделанных выводов следует пересмотреть существующие взгляды на диагностику, лечение и профилактику болезни Пертеса, активизировать разработку методик восстановления связки головки бедра при ее повреждении у детей (подробнее см. www. enet.ru /~archipov/).

Автор:

Архипов С.В. – С.В. Архипов-Балтийский это псевдоним, который использовался до начала 2006 года с целью более точной дифференцировки на научном поле.

Полесская центральная районная больница, Полесск, Калининградская область, Россия

Ключевые слова:

патогенез, болезнь Пертеса, остеохондропатия, коксартроз, эксперимент, ligamentum capitis femoris, связка головки бедра, круглая связка

Цитирование:

Архипов-Балтийский СВ. К вопросу о патогенезе болезни Пертеса. Актуальные вопросы детской травматологии и ортопедии. Материалы научно-практической конференции детских травматологов-ортопедов России. Санкт-Петербург, 2005:339-40.

Примечания:

Публикация рассматривает патогенез дистрофических изменений в головке бедренной кости у детей (остеохондропатия, болезнь Легг-Кальве-Пертеса) приводящая к коксартрозу. На основании экспериментов на механической модели указывается, что ключевым звеном в развитии патологии головки бедренной кости в детском возрасте может явиться травма ligamentum capitis femoris.

Сайт автора www. enet.ru / ~archipov «Морфомеханика» в настоящее время доступен в архиве [web.archive.org]

СОДЕРЖАНИЕ РЕСУРСА

Этиология и патогенез

Популярные статьи

Публикации о LCF в 2025 году (Март)

  Публикации о LCF в 2025 году (Март):  Статьи и книги с упоминанием LCF опубликованные в марте 2025 года. Matsushita, Y., Sugiyama, H., Hayama, T., Sato, R., & Saito, M. (2025). Long-term Outcome of Pediatric Arthroscopic Surgery for Avulsion Fracture of the Ligamentum Teres: A Case Report.  JBJS Case Connector ,  15 (1), e25.   [i]      journals.lww.com   Arkhipov, S. V. (2025).  Inferior Portal for Hip Arthroscopy: A Pilot Experimental Study. Pt. 2. Inferior Portal Prototypes.  About Round Ligament of Femur . February   26, 2025.   [ii]    researchgate . net   Pfirrmann, C. W., & Kim, Y. J. (2025). Advanced Imaging. In  Surgical Hip Dislocation: A Comprehensive Approach to Modern Hip Surgery  (pp. 29-42). Cham: Springer Nature Switzerland.   [iii]      link.springer.com   Singh, R., & Yadav, N. (2025). Morphometry and Morphology of the Fovea Ca...

Моделирование взаимодействия LCF нормальной длины и отводящей группы мышц

  Моделирование взаимодействия LCF нормальной длины и отводящей группы мышц   С целью дальнейшего уточнения значения отводящей группы мышц для биомеханики тазобедренного сустава, articulatio coxae , мы изучили ее взаимодействие со связкой головки бедренной кости, ligamentum capitis femoris , нормальной длины. Аналог связки головки бедренной кости одним концом соединялся с моделью вертлужной впадины, будучи пропущенным через отверстие, расположенное на границы ямки и канавки фасонной выточки модели вертлужной впадины (Рис. 1). Рис. 1. Тазовая часть механической модели тазобедренного сустава птицы, через отверстие в фасонной выточке, лежащее на границе ямки (круглого углубления) и канавки (продольного углубления) пропущен аналог связки головки бедренной кости; вид с латеральной стороны.     Другой конец аналога связки головки бедренной кости соединялся с бедренной частью модели после размещения тазовой части модели на головке бедренной части модели. Методика соеди...

Механическая модель с аналогом связки головки бедренной кости

  Механическая модель с аналогом связки головки бедренной кости   Для уточнения механической функции связки головки бедренной кости , ligamentum capitis femoris , применена ранее описанная трехмерная механическая модельтазобедренного сустава без аналогов наружных связок. В качестве аналога связки головки бедренной кости , ligamentum capitis femoris , использован плетеный капроновый шнур диаметром 5 мм. Одним концом он соединялся с моделью вертлужной впадины тазовой части модели, будучи пропущенным, через одно из отверстий в ее фасонной выточке. Изначально мы пропустили аналог связки головки бедренной кости через отверстие, выполненное в центре фасонной выточки модели вертлужной впадины. Это, по нашей мысли, моделировало прикрепление связки к дну ямки вертлужной впадины (Рис. 1).   Рис. 1. Тазовая часть механической модели тазобедренного сустава, через центральное отверстие в фасонной выточке пропущен аналог связки головки бедренной кости (вид с латеральной сторо...

Моделирование взаимодействия удлиненной LCF и отводящей группы мышц

  Моделирование взаимодействия удлиненной LCF и отводящей группы мышц В настоящей серии экспериментов на трехмерной механической модели тазобедренного сустава, мы еще больше уд линили часть аналога связки головки бедренной кости, которая располагалась внутри шарнира – аналоге вертлужного канала. Для этого аналог связки головки бедренной кости одним концом он соединялся с моделью вертлужной впадины, будучи пропущенным, через отверстие в канавке фасонной выточке. При этом область крепления располагалась на расстоянии 25 мм от наружного края модели вертлужной впадины (Рис. 1). Рис. 1. Тазовая часть механической модели тазобедренного сустава через отверстие в канавке фасонной выточки, лежащим на расстоянии 25 мм от наружного края, пропущен аналог связки головки бедренной кости (вид с латеральной стороны).   В данном случае смоделировано крепление проксимального конца связки головки бедренной кости, ligamentum capitis femoris , в середине вырезки вертлужной впадины, incisur...

УЧЕНИЕ О LCF

уЧЕНИЕ   О   ligamentum capitis femoris:   Инструмент познания и инноваций. Определение: Совокупность теоретических положений о всех аспектах знаний об анатомическом элементе  ligamentum   capitis   femoris   ( LCF ).   1. Структура Учения о LCF 2. Практическое приложение Учения о LCF: 2.1. Диагностика 2.1. Певенция   2.3. Прогноз 2.4. Патология 2.5. Ветеринария   2.6. Профессии     2.7. Изделия     2.8. Хирургия   3. Теория Механики LCF    4. Фундамент Учения о LCF 5. Лестница в прошлое или История Учения о LCF 6. Предельная глубина исследований   7. Приложения 7.1. Допустимые синонимы названия     Структура  УЧЕНИя    О   ligamentum  capitis  femoris .       З     Е     М                   Л                       Л   ...