К основному контенту

НОВЫЕ ПУБЛИКАЦИИ в 2026 г.

    Н ОВЫЕ ПУБЛИКАЦИИ РЕСУРСА в 2026 г.  Начальный этап сбора сведений о LCF , накопленный до 20-го века, в целом завершен. Далее планируется анализ и синтез тематической информации, с добавлением сведений 20-21-го века. Работа будет сосредоточена прежде всего на: профилактике, диагностике, артроскопии, пластике, эндопротезировании. 22 .01.2026 Полный доступ к PDF версии книги: Дети человеческие 14 .01.2026 2026АрхиповСВ.  ДАРЫ ВОЛХВОВ ОРТОПЕДИЧЕСКИМ ХИРУРГАМ  ( Новая техника проксимального крепления при реконструкции LCF). 05 .01.2026 2018YoussefAO .   В статье описан спо соб укорочения LCF при врожденном вывихе бедра. 2007WengerD_OkaetR .  А вторы в эксперименте показали, что прочность LCF достаточна для обеспечения ранней стабильности при реконструкции тазобедренного сустава у детей. 04 .01.2026 2008BacheCE_TorodeIP.   В статье описан способ транспозиции проксимального крепления LCF при врожденном вывихе бедра.   2021PaezC_WengerD...

Рассуждение о морфомеханике. 6.5.15 Биоинерция

 

6.5.15 Биоинерция

Порождаемые биоиндукцией биологические процессы в живых системах не начинаются и не заканчиваются в одночасье. Обсуждая явление ускорения биоиндукции, мы отмечали, что развитие биологических процессов сродни механическому движению.

После появления в ткани биоэффективных напряжений в ней индуцируются приспособительные процессы. Вклад в них привносит каждая клетка, воспринимающая наличие биоэффективного напряжения. Однако не во всех точках органа биоэффективные напряжения появляются одномоментно. Это означает, что не все клетки одновременно включаются в процесс нивелирования биоэффективных напряжений. Отсюда, в начале развития приспособительной реакции, скорость биоиндукции будет низкой. По мере вовлечения в приспособительный биологический процесс все новых клеток, ее величина будет возрастать. Она достигнет максимума тогда, когда большая часть клеток органа или ткани будет задействована в реализации приспособления.

Соответственно для полного развития биологического процесса необходимо некоторое время. Оно определяется мерой инертности живой системы, которую мы назвали - биоинерция. Она является важной характеристикой живой системы и сродни массе в механике. От нее зависит скорость развития приспособительного процесса, его эффективность. Думается, что биоинерция генетически детерминирована.

Нивелирование в органе биоэффективных напряжений также завершается постепенно. В разных участках ткани они исчезают в разное время. Вследствие этого, последовательно все новые клетки исключаются из участия в приспособительном процессе. Отсюда скорость биоиндукции неуклонно уменьшается. После ликвидации биоэффективных напряжений, течение биологических процессов еще некоторое время продолжается. Из тканей удаляются продукты обмена, отводится избыточная энергия, приспособительные процессы постепенно затухают. Причина описанной постепенности видится нам в присутствии биоинерции у живых систем.

Как выше было показано, изменение величины потока биоиндукции во времени определяет продольную силу биоиндукции. Она тем выше, чем больше изменение потока биоиндукции за меньшее время. Вместе с тем скорость развития биологических процессов, период, в течение которого они начинаются и заканчиваются, зависят отчасти и от самой живой системы. Это определяется информационным, энергетическим и материальным обеспечением приспособительных процессов. Все эти составляющие в значительной степени генетически запрограммированы. Скорость развития биологических процессов, и величина сил биоиндукции различны у особей даже одного вида. Вследствие этого можно говорить о различиях в биоинерции живых систем. Чем она ниже, тем быстрее начинаются и заканчиваются биологические процессы. Чем больше биоинерция, тем медленнее развиваются приспособительные реакции и дольше они наблюдаются.

Явление инерции известно, как в механике, так и в электродинамике. В частности, определено, что магнитный поток пропорционален силе тока. Коэффициентом пропорциональности выступает величина, называемая индуктивностью или коэффициентом самоиндукции: 

Ф = LI

где, Ф - магнитный поток; I - сила тока; L - коэффициент самоиндукции.

Соответственно можно рассчитать и величину электродвижущей силы с учетом индуктивности: 

E = - DФ/Dt = - LI/Dt, 

Применяя ранее выявленные аналогии между электрическими и биологическими величинами, можно записать формулу для определения потока биоиндукции: 

Vi = Iuв, 

где, Vi – поток биоиндукции; uв – скорость биоиндукции;

I – величина биоинерции живой системы. Соответственно произведение биоэффективного напряжения на величину биоинерции есть поток биоиндукции. Величина биоинерции может быть вычислена по формуле: 

I = Vi/uв,

Единицу измерения биоинерции предлагается именовать «Селье». Она названа в честь Ганса Селье (Hans Hugo Bruno Selye [Selye János]; 1907-1982) сформулировавшего концепцию стресса и углубившего представления о реактивности организма. Соответственно реактивность понятие близкое к понятию биоинерции и является ее прообразом.

Размерность биоинерции: 

[I] = м3с/Аr = м5с2/Н = м4с4/кг = 1Se

dimI = L4M-1T4 

Биоинерция показывает, какова величина «инерции» данной живой системы, как скоро в ней начинается процесс нивелирования биоэффективных напряжений после их появления. А также, как долго продолжаются приспособительные процессы после ликвидации биоэффективных напряжений. Биоинерция является отражением особого свойства живых систем поддерживать определенный морфомеханический гомеостаз. Она есть численное выражение реактивности.

С учетом формулы для вычисления потока биоиндукции получаем выражение для продольной силы биоиндукции (силы Вольфа): 

FW = -DVi/Dt = -Iuв/Dt, 

Из формулы проистекает, что чем меньше биоинерция, тем больше сила Вольфа, и наоборот. Размерность, получаемая для силы Вольфа по данной формуле та же, что была определена нами ранее. Это свидетельствует о правомерности применяемых нами методов и рассуждений.

Рассматривая полученную формулу для силы Вольфа, можно отметить еще несколько интересных аналогий. Величина FW – подобна силе в механике, отношение uв/Dt - аналогична ускорению, тогда I - биоинерция, не что иное, как аналог массы в морфомеханике. Формула для силы Вольфа FW = -Iuв/Dt, сродни известной формуле для силы в механике F = ma. Это также подтверждает правильность избранного пути выведения формул в морфомеханике.


                                                                     

Автор:

Архипов С.В. – С.В. Архипов-Балтийский является псевдонимом, который использовался до начала 2006 года с целью более точной дифференцировки на научном поле.

Цитирование:

Архипов-Балтийский СВ. Рассуждение о морфомеханике. Норма. В 2 т. Т. 1. Гл. 1-4. - Испр. и доп. изд. Калининград, 2004. [aleph.rsl.ru]

Архипов-Балтийский СВ. Рассуждение о морфомеханике. Норма. В 2 т. Т. 2. Гл. 5-6. - Испр. и доп. изд. Калининград, 2004. [aleph.rsl.ru]

Примечания:

Первая крупная публикация автора, посвященная морфомеханике живых систем, биомеханике пояса нижних конечностей и связки головки бедра, ligamentum capitis femoris (LCF).

Ключевые слова

ligamentum capitis femorisligamentum teres, связка головки бедра, анатомия, морфомеханика, биомеханика

СОДЕРЖАНИЕ РЕСУРСА

Биомеханика и морфомеханика

Популярные статьи

НИЖНИЙ ПОРТАЛ ДЛЯ АРТРОСКОПИИ ТАЗОБЕДРЕННОГО СУСТАВА

  Объединенная PDF версия статьи: Архипов СВ. Нижний портал для артроскопии тазобедренного сустава: пилотное экспериментальное исследование, 26.02.2025.  На данной странице представлена фотокопия работ. Ссылки для скачивания PDF версии и адреса онлайн публикаций смотри ниже . Перевод на английский доступен по ссылке: INFERIOR PORTAL FOR HIP ARTHROSCOPY . 

УЛУЧШЕНИЕ ПОСЛЕОПЕРАЦИОННОГО КОМФОРТА...

  Улучшение послеоперационного комфорта и повышение надежности тазобедренного протеза путем дополнения искусственными связками: Демонстрация концепции и прототип Архипов С.В.     Содержание [i]   Аннотация [ii]   Введение [iii]   Материал и методы [iv]   Результаты и обсуждение [v]   Статические испытания [vi]   Динамические испытания [vii]   Изготовление и тестирование прототипа [viii]   Заключение [ix]   Список литературы [x]   Приложение [i]   Аннотация Продемонстрирован принцип функционирования экспериментального тотального эндопротеза тазобедренного сустава с аналогами связок в одноопорных вертикальных позах и в середине одноопорного периода шага. Опыты проводились на специально сконструированном мехатронном испытательном стенде. Концепция важной роли связочного аппарата дополнительно проиллюстрирована набором демонстрационных механических моделей. Данные, полученные в экспериментах, позволили изготовить прототип...

Эндопротез с LCF. Часть 1

  Эндопротезы с аналогом ligamentum capitis femoris как свидетельства смены парадигмы в артропластике: Систематический обзор Часть  1. История, материал и методы Архипов С.В., независимый исследователь, Йоенсуу, Финляндия  

2025АрхиповСВ. ПОЧЕМУ ВОССТАНОВЛЕНИЕ ВЕРТЛУЖНОЙ ГУБЫ МОЖЕТ БЫТЬ НЕЭФФЕКТИВНО?

Тематический Интернет-журнал О круглой связке бедра Апрель, 2025 Почему восстановление вертлужной губы может быть НЕЭФФЕКТИВНО?: заметка о таинственной «темной материи» в тазобедренном суставе Архипов С.В., независимый исследователь, Йоенсуу, Финляндия Аннотация Восстановление и реконструкция вертлужной губы не предотвращает остеоартрит и нестабильность тазобедренного сустава при ходьбе в случае удлинения ligamentum capitis femoris . Заключение сделано на основании математических расчетов и анализа результатов экспериментов на механической модели. Ключевые слова: артроскопия, тазобедренный сустав, вертлужная губа, ligamentum capitis femoris, ligamentum teres, связка головки бедренной кости, реконструкция, восстановление Введение Почти 80% первичных артроскопий тазобедренного сустава включает восстановление вертлужной губы (2019 WestermannRW _ RosneckJT ). Реконструкция – наиболее распространенная процедура для устранения патологии вертлужной губы и при ревизионной артроскопии (2...

ДАРЫ ВОЛХВОВ ОРТОПЕДИЧЕСКИМ ХИРУРГАМ

Новая техника проксимального крепления при реконструкции ligamentum capitis femoris: Дары волхвов ортопедическим хирургам  Архипов С.В.     Содержание [i]   Аннотация [ii]   Введение [iii]   Материалы и методы [iv]   Техника [v]   Обсуждение [vi]   Заключение [vii]   Приложение [viii]   Список литературы [ix]   Структурированное резюме [x]   Дополнительный материал [i]   Аннотация Описана экспериментальная техника реконструкции ligamentum capitis femoris ( ligamentum teres femoris ). Предложено формирование двух порций аналога связки: лобковой и седалищной. Их крепление осуществляется в седалищном и лобковом туннелях, выполненных в соответствующих костях таза. Методика опробована на модели тазобедренного сустава. При артроскопической реконструкции предлагается визуальная поддержка через нижний доступ и бедренный туннель.   [ii]   Введение Приблизительно 3600 лет назад безвестный египетский врач осознал ...