К основному контенту

НОВЫЕ ПУБЛИКАЦИИ

  Н ОВЫЕ ПУБЛИКАЦИИ РЕСУРСА:      06 .04 .2025 2025АрхиповСВ. ПОЧЕМУ ВОССТАНОВЛЕНИЕ ВЕРТЛУЖНОЙ ГУБЫ МОЖЕТ БЫТЬ НЕЭФФЕКТИВНО? Статья. Grok. Рецензия на статью «Почему восстановление вертлужной губы может быть неэффективно?»   Рецензия на статью. ChatGPT. Рецензия на статью «Почему восстановление вертлужной губы может быть неэффективно?»  Рецензия на статью. 02 .04 .2025 РАЗОБЩАЮЩИЙ ЭФФЕКТ ПРИ УДЛИНЕННОЙ LCF.   Публикация в группе  facebook.  01 .04 .2025 Публикации о LCF в 2025 году (Март)   Статьи и книги с упоминанием LCF опубликованные в марте 2025 года. 31 .03 .2025 Создан раздел  ИНТЕРНЕТ ЖУРНАЛ  для депонирования выпусков.  Интернет-журнал "О КРУГЛОЙ СВЯЗКЕ БЕДРА", март 2025. Второй  выпуск.  30 .03 .2025 2025АрхиповСВ. ДЕТИ ЧЕЛОВЕЧЕСКИЕ :  истоки библейских преданий в обозрении врача (2025). Эссе датирует написание книги Бытие, изображенные в ней события и упоминание LCF, а также опровергает авт...

Рассуждение о морфомеханике. 6.4.22 «???»

 

6.4.22 «???»

Как было показано выше, живая ткань способна реагировать на изменение среднесуточного напряжения. Данная реакция выражается в качественной и количественной ее трансформации. Если быть точным, то реагируют на изменение силового поля клетки, именно они и изменяют свою внешнюю среду и, зачастую, изменяются сами. Задача происходящих в тканях процессов в том, чтобы фактические среднесуточные напряжения, различных по направлению потоков внутренних сил, оставались равными оптимальным среднесуточным напряжениям.

Уровень оптимальных среднесуточных напряжений для конкретной ткани, несомненно, существует. Его доказывает хотя бы то, что клетки нашего организма имеют примерно одинаковую по толщине и строению клеточную мембрану. Изменение давления снаружи клетки нежелательно. Клеточная мембрана может быть повреждена как при повышении, так и понижении давления. Соответственно клетка существует в некотором интервале интенсивности внутренних сил и всемерно стремиться его сохранить. Одним из путей снижения нагрузки на клеточную мембрану — это изменение межклеточного вещества. Повышение прочности последнего обеспечивает шунтирование внешней силы, обеспечивает клетке «комфортное существование» при повышении интенсивности механического фактора.

Для стабильности клеток важно, чтоб давление снаружи и внутри клеток было равно, либо изменялись медленно и однонаправлено. Состав и параметры клеточных мембран стабильны, неизменяемы. Соответственно при повышении давления внутри клетки клетка становится способной переносить повышение давления снаружи. Изменение давления внутри клетки возможно, например, путем дополнительной накачки в нее воды. Это доказывает принципиальную возможность адаптации клетки к изменению давления во вне. Таким же образом можно уменьшить давление внутри клетки в ответ на снижение давления снаружи.

По нашему мнению, для каждой из тканей организма, в том числе однотипных тканей разных особей, существует свой строго определенный уровень оптимальных среднесуточных напряжений. Данный уровень оптимальных среднесуточных напряжений, живая система может, в определенных пределах, изменять посредством биологических процессов. Кроме этого, также через биологические процессы, организм имеет возможность изменить фактическую величину среднесуточных напряжений. Процессы, изменяющие фактические среднесуточные напряжения и уровень оптимальных, могут протекать параллельно. Данные биологические процессы следует рассматривать как приспособительные. Они регулируемы. Следовательно, регулируема фактическая величина среднесуточных напряжений и уровень оптимальных среднесуточных напряжений. Эта регуляция осуществляется по принципу обратной связи.

В системе регуляции среднесуточных напряжений можно выделить рецепторные, эффекторные и проводящие элементы. К рецепторным элементам следует отнести механорецепторы тканей и рецепторы клеточных мембран. К проводящими элементами мы причисляем отростки нейронов, сосудистую систему, межклеточное вещество, цитоплазму. Эффекторы системы управления среднесуточными напряжениями являются клетки с их органеллами и мышцы. Не менее важна информация об оптимальном уровне среднесуточных напряжений, стратегии и перечне процессов способных повлиять на него. Данная информация сосредоточена в ЦНС (головной, спинной мозг) и нуклеиновых кислотах (ДНК, РНК). Во время течения биологического процесса постоянно происходит обмен информацией между органеллами, клетками, тканями и органами, синтезируются и разрушаются нуклеиновые кислоты, сигнальные молекулы. Получаемые сигналы постоянно сравниваются с некими хранимыми в живой системе эталонами. С нашей точки зрения, информация, является неотъемлемой составляющей живой системы как масса и энергия. Она также расходуется, накапливается и перемещается.

Передача сигнала на уровне организма осуществляется посредством нервной и гуморальной системы, а на клеточном уровне через цитоплазму. Реализуются сигналы в конечном итоге самими клетками, порождающими биологические процессы. Их деятельность продолжается до тех пор, пока фактический уровень среднесуточных напряжений не сравняется с оптимальным для данной ткани. Отсутствие различий между ними приостанавливает поступление в ЦНС и клетку сигнала, запускающего биологические приспособительные процессы.

Человек, как и все живое на Земле, существует в определенном силовом поле, с приблизительно постоянной величиной воздействия механического фактора. Соответственно в органах и тканях живых систем наблюдаются определенные величины среднесуточных напряжений, в норме они идентичны оптимальным. Строение и механические свойства живых систем полностью адекватны действующему на них механическому фактору. В обычных условиях возникающие нагрузки не приводят к повреждениям. Иными словами, условия жизни живых систем в норме механически безопасны. Это в свою очередь не вызывает критических повышений действующих напряжений и не изменяет уровень фактических среднесуточных напряжений.

Внутренние силы в живых системах могут влиять как на биологические процессы, так и непосредственно на органы и ткани. Ранее было показано то, что их деформация (изменение внешней формы), связана с биологическими процессами. Вместе с тем нельзя отрицать факт наличия упругих, обратимых деформаций элементов живых систем. Будучи, обычными аморфными телами, живые системы должны подчиняться, и подчиняются законам физики. Действие на живые системы внешних и внутренних сил может приводить не только к упругим, но и пластическим деформациям.

Для нормального существования живых систем необходимо, чтобы их деформации были в основном обратимыми. Без этого длительное, однообразное (нормальное) функционирование невозможно. Соответственно при определенном оптимальном уровне среднесуточных напряжений пластических деформаций быть не должно, как не должно быть и повреждений разного рода. И те, и другие изменения необходимо рассматривать как следствие воздействия на организм избыточной нагрузки, превышающей некий допустимый предел.

Следует различать механическое и биологическое действие нагрузки. Если биологическое действие это постепенное, целенаправленная перестройка, то механическое это все деформации без таковой (упругие, пластические, повреждения). Данные механические явления в живых системах подчеркивает их связь с неживой материей, и указывает на то, что законы физики распространяются на них, в том числе. Отсюда проистекает вывод о единстве происхождения живой и неживой материи. Это исключает точку зрения на жизнь как нечто, не вписывающееся в мироздание, стоящее особняком от прочего материального мира. Жизнь есть особая, форма существования материи и не более того. Различия между живым и неживым качественные, первое есть иной более высокий этап развития второго. Возникновение в материи под воздействием нагрузки биологических процессов, одно из кардинальных отличий живого. Думается, что именно возникновение и течение управляемых биологических процессов главный критерий жизни. Отсюда можно вывести наше определение жизни - жизнь есть способ существования материальных объектов способных регулировать уровень среднесуточных напряжений и воспроизводить себе подобных.

Живой организм, в принципе, может быть и не органическая субстанция. Органика стала строительным материалом на Земле вследствие своего неисчерпаемого разнообразия вариантов и особых условий. На иных планетах вполне вероятна жизнь не только на основе углерода, не исключено, что она такая уже есть… или будет и на Земле…

Из биологических процессов важнейшими, с нашей точки зрения, являются процессы приспособления к среднесуточным напряжениям и воздействующие на них. Они поддерживают определенный «механический гомеостаз» живых систем. В результате течения биологических процессов направленно изменяется величина среднесуточных напряжений, они поддерживаются на неком оптимальном уровне. В то же время колебания интенсивности механического фактора постоянно изменяют соотношение между фактическими и оптимальными среднесуточными напряжениями. Определенную лепту в это привносит и нестабильность самой живой системы – изменяются величины оптимального значения среднесуточных напряжений для каждой из ее частей и тканей. Таким образом, фактические напряжения то превышают, то становятся ниже оптимальных среднесуточных напряжений.

Сомнений не вызывает тот факт, что механический фактор влияет на живые системы. Думается вполне обоснованным считать, что живые системы адаптируются не просто к нагрузке, а именно к среднесуточным напряжениям каждого из потоков внутренних сил. С нашей точки зрения это достаточно убедительно доказано предыдущими рассуждениями. Приспособление идет двумя путями, через изменение фактической величины среднесуточных напряжений, и через изменение их оптимального уровня. И тот, и другой пути реализуются посредством биологических процессов. На течение биологических адаптационных процессов и оптимальный уровень среднесуточных напряжений оказывает влияние генетический код. Соотношение генетической информации и информации о настоящем состоянии живой системы определяет оптимальный уровень среднесуточных напряжений для каждой ее точки.

Можно считать также доказанным, что механическое воздействие на живые системы порождает специфические биологические процессы. Однако не ясен вопрос, что же непосредственно воздействует на рецепторы тканей и клеток, что индуцирует в них те или иные биологические процессы??? Что это, нагрузка вообще, действующее в настоящий момент напряжение, среднесуточное напряжение или нечто иное. Понятно – это не внешняя сила, а некий параметр внутренней силы, так как рецепторы рассредоточены практически по всему объему тканей, и находятся не только на поверхности. Более того, биологические процессы, возникающие в живой системе, также протекают во всем объеме органа или ткани, и не только на ее поверхности. Это и не может быть непосредственно среднесуточные напряжения. Против этого говорит тот факт, что определенный уровень среднесуточных напряжений в тканях живых систем постоянно поддерживается. В противном случае приспособительные процессы в живых системах никогда бы не прекращались, а ткани при этом постоянно трансформировались. Подобное состояние в большей степени свойственно детскому и старческому организму, у взрослого же изменения строения и прочих характеристик не происходят, по крайней мере, видимых изменений нет.


                                                                     

Автор:

Архипов С.В. – С.В. Архипов-Балтийский является псевдонимом, который использовался до начала 2006 года с целью более точной дифференцировки на научном поле.

Цитирование:

Архипов-Балтийский СВ. Рассуждение о морфомеханике. Норма. В 2 т. Т. 1. Гл. 1-4. - Испр. и доп. изд. Калининград, 2004. [aleph.rsl.ru]

Архипов-Балтийский СВ. Рассуждение о морфомеханике. Норма. В 2 т. Т. 2. Гл. 5-6. - Испр. и доп. изд. Калининград, 2004. [aleph.rsl.ru]

Примечания:

Первая крупная публикация автора, посвященная морфомеханике живых систем, биомеханике пояса нижних конечностей и связки головки бедра, ligamentum capitis femoris (LCF).

Ключевые слова

ligamentum capitis femorisligamentum teres, связка головки бедра, анатомия, морфомеханика, биомеханика

СОДЕРЖАНИЕ РЕСУРСА

Биомеханика и морфомеханика

Популярные статьи

2025АрхиповСВ. ПОЧЕМУ ВОССТАНОВЛЕНИЕ ВЕРТЛУЖНОЙ ГУБЫ МОЖЕТ БЫТЬ НЕЭФФЕКТИВНО?

Тематический Интернет-журнал О круглой связке бедра Апрель, 2025 Почему восстановление вертлужной губы может быть НЕЭФФЕКТИВНО?: заметка о таинственной «темной материи» в тазобедренном суставе Архипов С.В., независимый исследователь, Йоенсуу, Финляндия Аннотация Восстановление и реконструкция вертлужной губы не предотвращает остеоартрит и нестабильность тазобедренного сустава при ходьбе в случае удлинения ligamentum capitis femoris . Заключение сделано на основании математических расчетов и анализа результатов экспериментов на механической модели. Ключевые слова: артроскопия, тазобедренный сустав, вертлужная губа, ligamentum capitis femoris, ligamentum teres, связка головки бедренной кости, реконструкция, восстановление Введение Почти 80% первичных артроскопий тазобедренного сустава включает восстановление вертлужной губы (2019 WestermannRW _ RosneckJT ). Реконструкция – наиболее распространенная процедура для устранения патологии вертлужной губы и при ревизионной артроскопии (2...

Публикации о LCF в 2025 году (Март)

  Публикации о LCF в 2025 году (Март):  Статьи и книги с упоминанием LCF опубликованные в марте 2025 года. Matsushita, Y., Sugiyama, H., Hayama, T., Sato, R., & Saito, M. (2025). Long-term Outcome of Pediatric Arthroscopic Surgery for Avulsion Fracture of the Ligamentum Teres: A Case Report.  JBJS Case Connector ,  15 (1), e25.   [i]      journals.lww.com   Arkhipov, S. V. (2025).  Inferior Portal for Hip Arthroscopy: A Pilot Experimental Study. Pt. 2. Inferior Portal Prototypes.  About Round Ligament of Femur . February   26, 2025.   [ii]    researchgate . net   Pfirrmann, C. W., & Kim, Y. J. (2025). Advanced Imaging. In  Surgical Hip Dislocation: A Comprehensive Approach to Modern Hip Surgery  (pp. 29-42). Cham: Springer Nature Switzerland.   [iii]      link.springer.com   Singh, R., & Yadav, N. (2025). Morphometry and Morphology of the Fovea Ca...

Моделирование взаимодействия LCF нормальной длины и отводящей группы мышц

  Моделирование взаимодействия LCF нормальной длины и отводящей группы мышц   С целью дальнейшего уточнения значения отводящей группы мышц для биомеханики тазобедренного сустава, articulatio coxae , мы изучили ее взаимодействие со связкой головки бедренной кости, ligamentum capitis femoris , нормальной длины. Аналог связки головки бедренной кости одним концом соединялся с моделью вертлужной впадины, будучи пропущенным через отверстие, расположенное на границы ямки и канавки фасонной выточки модели вертлужной впадины (Рис. 1). Рис. 1. Тазовая часть механической модели тазобедренного сустава птицы, через отверстие в фасонной выточке, лежащее на границе ямки (круглого углубления) и канавки (продольного углубления) пропущен аналог связки головки бедренной кости; вид с латеральной стороны.     Другой конец аналога связки головки бедренной кости соединялся с бедренной частью модели после размещения тазовой части модели на головке бедренной части модели. Методика соеди...

Механическая модель с аналогом связки головки бедренной кости

  Механическая модель с аналогом связки головки бедренной кости   Для уточнения механической функции связки головки бедренной кости , ligamentum capitis femoris , применена ранее описанная трехмерная механическая модельтазобедренного сустава без аналогов наружных связок. В качестве аналога связки головки бедренной кости , ligamentum capitis femoris , использован плетеный капроновый шнур диаметром 5 мм. Одним концом он соединялся с моделью вертлужной впадины тазовой части модели, будучи пропущенным, через одно из отверстий в ее фасонной выточке. Изначально мы пропустили аналог связки головки бедренной кости через отверстие, выполненное в центре фасонной выточки модели вертлужной впадины. Это, по нашей мысли, моделировало прикрепление связки к дну ямки вертлужной впадины (Рис. 1).   Рис. 1. Тазовая часть механической модели тазобедренного сустава, через центральное отверстие в фасонной выточке пропущен аналог связки головки бедренной кости (вид с латеральной сторо...

Моделирование взаимодействия удлиненной LCF и отводящей группы мышц

  Моделирование взаимодействия удлиненной LCF и отводящей группы мышц В настоящей серии экспериментов на трехмерной механической модели тазобедренного сустава, мы еще больше уд линили часть аналога связки головки бедренной кости, которая располагалась внутри шарнира – аналоге вертлужного канала. Для этого аналог связки головки бедренной кости одним концом он соединялся с моделью вертлужной впадины, будучи пропущенным, через отверстие в канавке фасонной выточке. При этом область крепления располагалась на расстоянии 25 мм от наружного края модели вертлужной впадины (Рис. 1). Рис. 1. Тазовая часть механической модели тазобедренного сустава через отверстие в канавке фасонной выточки, лежащим на расстоянии 25 мм от наружного края, пропущен аналог связки головки бедренной кости (вид с латеральной стороны).   В данном случае смоделировано крепление проксимального конца связки головки бедренной кости, ligamentum capitis femoris , в середине вырезки вертлужной впадины, incisur...