К основному контенту

Рассуждение о морфомеханике. 6.4.21 Рецепторы

 

6.4.21 Рецепторы

Живые системы способны управлять биологическими процессами, изменяющих уровень среднесуточных напряжений в них, а также адаптирующих их к механическому фактору. Следовательно, живые системы имеют возможность влиять на величину среднесуточных напряжений и приспосабливаться к ним.

Регуляция какого бы то ни было параметра немыслима без информации о нем, о его величине, в частности. Подобный мониторинг в организме осуществляют разнообразные и многочисленные рецепторы. Так величина напряжений в большинстве органов и практически в любой их точке регистрируются механорецепторами. В предыдущих главах уже были освещены известные механорецепторы. Отмечено в частности, что они составляют самую многочисленную группу чувствительных приборов. Особенно велика их концентрация в коже и элементах ОДС, то есть в органах, наиболее тесно взаимодействующих с механическим фактором. Подобные рецепторы располагаются как на поверхности, так и в глубине органов. Это подчеркивает и доказывает тот факт, что механорецепторы отслеживают, в том числе интенсивность внутренних сил и направление их потоков.

Нервная система, получая информацию об уровне напряжений в органах и тканях, имеет возможность, как непосредственно влиять на них, активизируя биологические процессы, так и через гуморальную систему. Налицо система управления с обратной связью. Обратную связь обеспечивают рецепторы и центростремительные нервные волокна. Системы с обратной связью управляют большинством физиологических параметров живой системы. Не исключение и такой параметр как среднесуточные напряжения в органах и тканях.

Существуя в определенном силовом поле и имея относительно постоянный уровень физической активности можно говорить, о том, что органы и ткани живых систем адаптированы к конкретной величине среднесуточных напряжений. Данный оптимальный уровень среднесуточных напряжений находится под постоянным контролем живой системы. Его изменение, в какой-либо области организма не проходит незамеченным, он регистрируется, анализируется и запускает тот или иной биологический процесс. Результатом может быть изменение величины среднесуточного напряжения или адаптация ткани к существующему в конкретной области живой системы уровню среднесуточных напряжений. Приспособление происходит по принципу обратной связи. Когда величина среднесуточных напряжений оказывается оптимальной для данной ткани, ЦНС отслеживая сигнал от рецепторов, тормозит приспособительный процесс. В результате либо сам уровень среднесуточных напряжений изменяется, либо ткань оказывается приспособленной к нему.

По всей видимости, нервная система, отвечая на изменение соответствия существующего (фактического) и оптимального уровня среднесуточных напряжений, реализует оперативную коррекцию. Срочное приспособление, в частности, возможно посредством влияния на мышечную ткань. При сохранении дисбаланса между существующим (фактическим) и оптимальным среднесуточным напряжением подключается гуморальная регуляция. Продукция специфических гормонов или же биологически активных веществ обеспечивает запуск и долговременное течение адаптационных процессов. Как показывают наблюдения, они идут сразу в двух направлениях - коррекция уровня среднесуточных напряжений и изменение оптимальной их величины для данной ткани. После совпадения уровня оптимальной и существующей (фактической) величины среднесуточного напряжения, адаптационные процессы затухают и приостанавливаются.

Возникновение и регуляция приспособительных процессов возможно и без привлечения нейрогуморальной системы. С нашей точки зрения в качестве рецепторов и эффекторов выступают сами клетки. Известно, что клеточная мембрана содержит обилие специфических белков. Думается, что именно их трансформация при изменении внутренних сил приводит к возникновению импульса, запускающего ту или иную клеточную реакцию. По всей видимости, клетка имеет возможность отслеживать уровень среднесуточных напряжений, как в собственной мембране, так и в межклеточном веществе. Большинство клеток ОДС (фибробласты, остеоциты), имеют многочисленные отростки – выросты клеточной мембраны, которые контактируют с другими клетками посредством клеточных контактов и с волокнистыми элементами межклеточного вещества. Отростки клеток, соединяясь с другими клетками и прикрепляясь к элементам межклеточного вещества, получает возможность регистрировать их смещение друг относительно друга, его величину, направление и силу, которая вызывает данную деформацию. В соответствии с полученной информацией клетка начинает действовать, например, преобразуется в другой вид (дифференцируется), перемещается, изменяет архитектонику межклеточного вещества, продуцирует новое межклеточное вещество, лизирует имеющееся и тому подобное. Данные процессы могут реализовываться параллельно, что ускоряет оптимизацию уровня среднесуточных напряжений в ткани. После достижения результата активность клеток приостанавливается.

Подобные приспособительные процессы могут протекать локально и без подключения нейрогуморальной системы, не загружая ее лишней информацией, не потребляя дополнительной энергии и вещества. Вместе с тем гуморальная система может вмешиваться в эти локально протекающие процессы. Так воздействуя на основное вещество, можно изменить оптимальный уровень среднесуточных напряжений. Например, повышение его вязкости приводит к увеличению оптимального значения среднесуточных напряжений, а понижение вязкости, наоборот. Аналогично можно сказать о том, что стимуляция синтетической активности клеток ткани приводит к более быстрой адаптации ткани к существующему (фактическому) среднесуточному напряжению.

Прочность соединения волокон и кристаллов между собой, соединение фибрилл в волокне также сказывается на оптимальном уровне среднесуточных напряжений. Вместе с тем химический состав элементов межклеточного вещества и соединений их между собой в значительной степени генетически обусловлено. Для каждой ткани, характерен свой особый состав межклеточного вещества, его механические свойства, а значит и оптимальный уровень среднесуточных напряжений, при котором клетки данной ткани способны нормально функционировать. Чем выше упругость волокнистых элементов, прочность соединения их между собой, тем большую величину растягивающей нагрузки они могут шунтировать. Физически это можно представить следующим образом: отростки клеточной мембраны, снабженные рецепторными белками, соединяются с различными волокнами межклеточного вещества, а также с разными участками одного волокна. Чем выше прочность соединения фибрилл в волокне, тем большую нагрузку оно может воспринять, не подвергаясь при этом деформации. Отсутствие растяжения волокна при данной нагрузке — это отсутствие воздействия на клеточные рецепторы. И наоборот, при смещении фибрилл в волокне друг относительно друга (продольное скольжение), то есть общем удлинении волокна под нагрузкой, в клеточной мембране, прикрепленной своими отростками к разным участкам волокна, генерируется потенциал действия. Включается тот или иной приспособительный процесс на основе имеющихся генетически запрограммированных реакций. Аналогична реакция при продольном скольжении одного волокна относительно другого – пластической деформации. Клетка, будучи соединенная отростками с соседними волокнами, реагирует на возникающую под нагрузкой деформацию. Чем более прочное соединение волокон между собой и более вязкое окружающее их основное вещество, тем большей интенсивности поток внутренних сил шунтируется. При этом клетка, не испытывая внешнего воздействия, не запускает приспособительные процессы, иными словами ткань имеет более высокий уровень оптимальных среднесуточных напряжений.

В костной ткани волокнистые структуры инкрустированы кристаллами. Благодаря этому волокна обретают свойство осевой жесткости. Отростки остеоцитов также прикрепляются к разным участкам одного и того же волокна, и к рядом расположенным волокнами. Оптимальным уровнем среднесуточных напряжений будет являться тот, при котором действующая нагрузка не будет приводить к деформации волокон, смещению их и костных пластинок друг относительно друга. Отсутствие этих явлений не вызовет реакцию клеточных рецепторов и не запустит соответствующий биологический процесс. Чем более упругие волокна, чем более вязкое основное вещество и прочнее соединение волокон и костных пластинок между собой, тем выше уровень оптимальных среднесуточных напряжений для данного участка костной ткани, конкретного индивидуума.

Согласно H.Yamada (1970) прочность тканей увеличивается приблизительно до 20 лет, далее уменьшается (Богданов В.А., 1976). По данным Г.А.Зедгенидзе и соавт. (1958), к 20-25 годам суставные хрящи «…как и вся костная система в целом достигает наивысшей дифференцировки».

Отсюда становится понятным, почему при отдельных болезнях и с возрастом наблюдаются деформации и «заболевания» органов ОДС. Если изменяется основное вещество (например, становится менее вязким) уменьшается прочность и число связей волокон между собой, тем меньшая нагрузка будет приводить к деформации ткани, и запускать те или иные биологические процессы характерные для патологии. Процесс старения организма связан, по нашему мнению, с трансформацией генетического кода. Повлиять же на него живая система не в состоянии. Отсюда изменения в ОДС неизбежны, они лишь вопрос времени и величины среднесуточных напряжений. По всей видимости, процессы старения живых систем сказываются и на пороге чувствительности рецепторов и клеток. Изменение их приводит к изменению уровня оптимальных среднесуточных напряжений, как правило, к их снижению. Здесь становится понятным «уменьшение сил» у пожилых, повышенная утомляемость, снижение прочности опорных структур.


                                                                     

Автор:

Архипов С.В. – С.В. Архипов-Балтийский является псевдонимом, который использовался до начала 2006 года с целью более точной дифференцировки на научном поле.

Цитирование:

Архипов-Балтийский СВ. Рассуждение о морфомеханике. Норма. В 2 т. Т. 1. Гл. 1-4. - Испр. и доп. изд. Калининград, 2004. [aleph.rsl.ru]

Архипов-Балтийский СВ. Рассуждение о морфомеханике. Норма. В 2 т. Т. 2. Гл. 5-6. - Испр. и доп. изд. Калининград, 2004. [aleph.rsl.ru]

Примечания:

Первая крупная публикация автора, посвященная морфомеханике живых систем, биомеханике пояса нижних конечностей и связки головки бедра, ligamentum capitis femoris (LCF).

Ключевые слова

ligamentum capitis femorisligamentum teres, связка головки бедра, анатомия, морфомеханика, биомеханика

СОДЕРЖАНИЕ РЕСУРСА

Биомеханика и морфомеханика

Комментарии

Популярные статьи

Эксперименты на рычажной модели

  Эксперименты на рычажной модели тазобедренного сустава Согласно современным представлениям, тазобедренный сустав , articulatio coxae , в одноопорной ортостатической позе функционирует как аналог рычага первого рода, что зачастую для наглядности иллюстрируется изображением рычажных весов ( Pauwels F ., 1973). С целью дальнейшего изучения биомеханики нижней конечности мы изготовили упрощенную рычажную модель тазобедренного сустава (Рис. 1).   Рис. 1. Рычажная модель тазобедренного сустава (вид с поворотом в 3/4); обозначения: 1 – основание, 2 – грузовая мачта, 3 – кронштейн грузовой мачты, 4 – рычаг, 5 – нагрузка, 6 – динамометр, 7 – серьга динамометра. Рычажная модель тазобедренного сустава выполнена из металлических планок. Она имела горизонтальное основание. К нему прикреплялась грузовая мачта, в верхней точке которой имелся кронштейн. К средней части грузовой мачты присоединялся на горизонтальной оси рычаг, который имел возможность свободного вращения во фронтальной плоскости.

927-942Arabic Bible

  Фрагмент книги Берешит (Вначале) в переводе на арабский, который произвел Саадия Гаон (927-942). В тексте на арабском языке содержатся упоминания о ligamentum capitis femoris ( LCF ) животного и человека. Краткий комментарий смотри ниже. Перевод на английский доступен по ссылке: 927-942Arabic Bible . Цитата. [ a ra] التكوين 32:32 ( источник : 1653WaltonB, p. 145) Современные редакции: لذلك لا يأكل بنو اسرائيل عرق النّسا الذي على حقّ الفخذ الى هذا اليوم . لانه ضرب حقّ فخذ يعقوب على عرق النّسا ( источник : arabicbible.com ) لِذَلِكَ لا يَاكُلُ بَنُو اسْرَائِيلَ عِرْقَ النَّسَا الَّذِي عَلَى حُقِّ الْفَخِْذِ الَى هَذَا الْيَوْمِ لانَّهُ ضَرَبَ حُقَّ فَخْذِ يَعْقُوبَ عَلَى عِرْقِ النَّسَا (источник: copticchurch . net ) Перевод [ Rus ] Бытие 32:32 Точное переложение на русский язык в настоящее время недоступно нашему проекту. Выявлен перевод ключевого термина, обозначающего LCF : النّسا   ~ седалищный ( подробнее см. комментарий). Sa ʻ adia   ben   Joseph .  Pentateuch . 1600 , с

Новости в сети интернет (2004 год)

  Новости в сети интернет Архипов-Балтийский С.В. Содержание 1. Переворот в механике тазобедренного сустава 2. Обозначено новое научное направление 3. Установлена неизвестная ранее закономерность 4. Уточнение ключевых определений биологии 5. Новая трактовка значения сна 6. Уточнена функция связки головки бедра   1. Переворот в механике тазобедренного сустава Установлено, что в ортостатическом положении с опорой на одну ногу, а также в середине одноопорного периода шага, тазобедренный сустав функционирует как рычаг второго рода. Это обеспечивается за счет натяжения связки головки бедра, ограничивающей приведение бедра и наклон таза в неопорную сторону. Благодаря связке головки бедра происходит замыкание тазобедренного сустава во фронтальной плоскости. При этом основная нагрузка приходится на нижние сектора головки бедренной кости и вертлужной впадины. До сих пор считалось, что в одноопорном ортостатическом положении тазобедренный сустав функционирует как рычаг первого рода. Таз удержива

922-722bcElohist

  Фрагмент книги Берешит (Бытие) утраченного библейского источника Элохист, начертанного палеоеврейским письмом. Вариант древнейшего описания повреждения ligamentum capitis femoris ( LCF ) и причины хромоты возрастом 922-722 гг. до совр. эры. Краткий комментарий смотри ниже. Перевод на английский доступен по ссылке: 922-722 bcElohist . Цитата . [ Paleo-Hebrew ] Elohist . Bereshit 32:32-33 (источник: 5784 Moshe   Ben   Amram , стр. 41; правка наша ) Перевод [ Rus ] Элохист. Берешит 32:32-33 И засияло ему солнце, когда он проходил Пынуэйл; а он хромал на бедро свое. Поэтому не едят сыны Исраэйлевы сухой жилы, которая из сустава бедра, до нынешнего дня , потому что коснулся тот сустава бедра Яакова в жилу сухую. (наша правка-реконструкция версии 1978БроерМ_ЙосифонД, Берешит 32:32-33; сохранен текст 922-722 гг. до совр. эры, принадлежащий утраченному библейскому источнику «Элохист») Moshe Ben Amram. Pentateuch in Paleo-Hebrew, 5784. Внешние ссылки Moshe Ben Amram. Pentateuch in Pal

Моделирование одноопорной ортостатической позы при коксартрозе с горизонтальным положением таза

    Моделирование одноопорной ортостатической позы при коксартрозе с горизонтальным положением таза [1] . Введение [2] . Моделирование одноопорной ортостатической позы при коксартрозе без наклона таза в сагиттальной плоскости [3] . Моделирование одноопорной ортостатической позы при коксартрозе с наклоном таза вперед [4] . Моделирование одноопорной ортостатической позы при коксартрозе с наклоном таза назад   [1] . Введение В настоящей серии экспериментальных исследований предпринято изучение взаимодействия связок и мышц тазобедренного сустава, articulatio coxae , при коксартрозе в одноопорной ортостатической позе с горизонтальным положением таза, pelvis . Для постановки опытов нами использована модифицированная модель тазобедренного сустава , которая содержала бедренную часть и объемную тазовую часть с прикрепленной к ней нагрузкой 1 кг. Последняя моделировала действие веса тела и присоединялась к крайнему отверстию грузового кронштейна, находящемуся на уров

Моделирование начала двухопорного периода шага при коксартрозе

  Моделирование начала двухопорного периода шага при коксартрозе [1] . Введение [2] . Моделирование начала второго двухопорного периода шага при коксартрозе [1] . Введение В настоящей серии экспериментов предпринято изучение взаимодействия связок и мышц тазобедренного сустава, articulatio coxae , в начале двухопорного периода шага при коксартрозе. Для постановки опытов нами использована  модифицированная механическая модель.  Конструкция содержала бедренную часть и объемную тазовую часть с прикрепленной к ней нагрузкой 1 кг. Последняя моделировала действие веса тела и присоединялась к крайнему отверстию грузового кронштейна, находящемуся на уровне изображения межпозвонкового диска L 5- S 1 позади плоскости объемной тазовой части. Точка расположения груза воспроизводила общий центр масс тела, локализующийся медиальнее, выше и позади от тазобедренного сустава, articulatio coxae .   Модель воспроизводила функцию трех основных групп мышц тазобедренного сустава, articul

8cent.bcHomer.

  Фрагмент поэмы Гомера Илиада ( Ὅμηρος . Ἰλιάς , ок. 8 в. до совр. эры). Поэт описывает открытый переломо-вывих бедра, который обычно сопровождается повреждением ligamentum capitis femoris ( LCF ). Наш краткий комментарий смотри ниже. Перевод на английский доступен по  ссылке: 8cent.bcHomer .  Цитируемый нами отрывок упоминается в трудах иных авторов: 177-180bGalen , 976-1115TheophilusProtospatharius , 1603IngrassiaeIP , 1724FabriciusJA , 1842GreenhillGA , 2020АрхиповСВ_ПролыгинаИВ . Цитата. [Grc] Ἰλιάς . E . 302-310. (источник: 1 8 9 0Homer ,  p .  9 1) Перевод Илиада. Песнь пятая. Подвиги Диомеда. 302-310. С криком ужасным. Но камень рукой захватил сын Тидеев, Страшную тягость , какой бы не подняли два человека Ныне живущих людей , — но размахивал им и один он; Камнем Энея таким поразил по бедру, где крутая Лядвея ходит в бедре по составу, зовомому чашкой: Чашку удар раздробил, разорвал и беде́рные жилы, Сорвал и кожу камень жестокий. Герой пораженный Пал на колено вперед; и, кол

5-6cent.Georgian Bible

  Фрагмент книги Рождение (Бытие) грузинской Библии ( 5-6 в. ). В тексте на старогрузинском языке содержатся упоминания о ligamentum capitis femoris ( LCF ) животного и человека. Краткий комментарий смотри ниже. Перевод на английский доступен по ссылке: 5-6cent.Georgian Bible . Цитата. [ Geo ( asomtavruli ) ] Ⴜიგნი პირველი Ⴃაბადებისაჲ 32:32 ამისთჳს არა ჭამიან ძეთა ისრაჱლისათა ძარღჳ იგი , რომელ დაუბუშა , რომელი არს ვრცელსა ბარკლისასა , ვიდრე დღენდელად დღედმდე , რამეთუ შეახო ვრცელსა ბარკლისა იაკობისსა , რომელ დაუბუშა . (источник: titus . fkidg 1. uni - frankfurt . de ) (источник: 1 989 წიგნნი   ძუელისა   აღთქუმისანი  [Акакий Шанидзе] , стр. 199-200) Перевод [ Rus ] Рождение 32:32 Переложение на русский язык в настоящее время недоступно нашему проекту. Выявлен перевод ключевого термина: ძარღჳ = ძარღვი = жила (1901ЧубиновДИ; подробнее см. комментарий). Внешние ссылки წიგნნი ძუელისა აღთქუმისანი 978 წლის ხელნაწერის მიხედვით: ტომი 1, ნაკვეთი 1: დაბადებისაჲ. გამოსლვათ

Моделирование асимметричной двухопорной ортостатической позы

  Моделирование асимметричной двухопорной ортостатической позы Различают два основных типа вертикальной позы с опорой на две нижние конечности: симметричная двухопорная ортостатическая поза и асимметричная двухопорная ортостатическая поза (Рис. 1). Рис. 1. Основные типы двухопорной ортостатической позы; слева – симметричная двухопорная ортостатическая поза, справа – асимметричная двухопорная ортостатическая поза. Симметричная двухопорная ортостатическая поза характеризуется горизонтальным положением таза,   pelvis , и равномерной нагрузкой на обе выпрямленные в коленных суставах,   articulatio   genum , нижние конечности. В асимметричной двухопорной ортостатической позе (асимметричный тип стояния или стойка «вольно»), одна из ног выпрямлена, а другая согнута в коленном суставе,   articulatio   genum , и тазобедренном суставе,   articulatio   coxae . При этом таз,   pelvis , располагается под углом к горизонту (Недригайлова О.В., 1967; Иваницкий М.Ф., 1985). Означенные типы вертикальной