К основному контенту

НОВЫЕ ПУБЛИКАЦИИ

  Н ОВЫЕ ПУБЛИКАЦИИ РЕСУРСА      20 .06.2025 LCF на аккадском.   Первое в истории упоминание LCF на аккадском языке: « nim š u » .  LCF домашнего гуся. Часть 1.   Систематика домашнего гуся, обзор костной анатомии таза и бедра с акцентом на области крепления  LCF . 18 .06.2025 2025Copilot. Древний Египет.   Картина. Изображение об стоятельств и механизма травмы LCF.  17 .06.2025 2025ChatGPT . Современное искусство.   Картина. Изображение об стоятельств и механизма травмы LCF.  16 .06.2025 2025ChatGPT. Барокко.   Картина. Изображение об стоятельств и механизма травмы LCF.  15 .06.2025 Связка головки бедра – мистический элемент тазобедренного сустава.   Фильм, содержащий лекцию «Фундамент Учения о связке головки бедра». 01 .06.2025 Публикации о LCF в 2025 году (Май) . Статьи и книги с упоминанием LCF опубликованные в мае 2025 года. 30 .05.2025 Модель и протез.   Публикация в гр уппе faceboo k. 26 .05.202...

Рассуждение о морфомеханике. 5.7.10 Нагрузка на тазобедренный сустав


5.7.10 Нагрузка на тазобедренный сустав

Учитывая то, что процесс ходьбы периодический, знакопеременный характер имеют и действующие на тело человека силы. Столь же периодически возникают в элементах ОДС вполне определенные потоки внутренних сил.

Кинематика ходьбы была подробно изучена O.Fischer (1889; 1899). Данный автор двойной шаг разделил на 31 позицию, где одноопорное положение для правой нижней конечности продолжается с 12 по 22 позицию. В 12-ой позиции пятка соприкасается с поверхностью опоры. При этом результирующая сила воздействует на ГБК в направлении сзади-кнаружи-вниз под углом 30° в сагиттальной плоскости, 16 позиция – среднее положение, здесь результирующая сила лежит во фронтальной плоскости и направлена кнаружи-вниз под углом 16°. В 22-ой позиции пальцы опорной ноги отталкиваются от плоскости опоры. Результирующая сила в данном положении направлена назад-кнаружи-вниз и лежит под углом 20° в сагиттальной плоскости. Отношение сил, удерживающих таз в равновесии в 16-ой позиции составляет приблизительно 1:2,75 (4 см плечо отводящих мышц, 10.99 плечо веса тела). К отводящим мышцам относятся средняя и малая ягодичные, грушевидная, мышца, напрягающая широкую фасцию бедра, прямая мышца бедра и портняжная мышца. В любой из позиций одноопорного положения результирующая сила действует на верхний сектор ГБК. Результирующая сил может быть разложена на два компонента вертикальный и горизонтальный. Большой шаг увеличивает горизонтальную силу и уменьшает вертикальную силу, с другой стороны, в коротком шаге уменьшается горизонтальная сила и увеличивается вертикальная (Рис.5.81) (Bombelli R., 1976).

Замечено, что в субхондральном отделе ГБК костные балки толще, чем в средней части. Согласно данным F.Pauwels нагрузка, действующая на верхнюю часть ГБК, обусловлена силой сжатия. Нагруженным оказывается сферический сектор ГБК положение, которого изменяется в зависимости от фазы шага. Величина сферического сектора находится в пределах 56-90°. Размеры сектора зависят от ширины полулунной поверхности крыши ВВ. Указанная нагрузка и обусловливает ориентацию костных пластинок проксимальном отделе бедра. Расчеты показывают, что напряжение в ГБК возрастают при уменьшении угла, а значит и площади сферического сектора. В центре сферического сектора присутствуют силы сжатия, по периферии, в экваториальной зоне ГБК срезающие силы. Действующие динамические силы, изменяющие свою ориентацию в различные фазы шага, формируют вогнутость суставной поверхности ВВ и трабекулярную систему ГБК - трабекулы растяжения и сжатия (Рис.5.82) (Bombelli R., 1993).

В процессе ходьбы на ГБК действуют статические и динамические силы, а также силы действующих мышц. Это обусловливает значительно большую нагрузку на ГБК чем в положении покоя. В одноопорном периоде шага нагрузка, действующая на ГБК с медиальной стороны, обусловлена силой тяжести, приложенной к ОЦМ и уравновешивающей ее силой, развиваемой отводящими мышцами. Сумма данных сил и определяет напряжение в ГБК. Масса тела в одноопорном периоде шага постоянна и равна массе тела за вычетом массы опорной нижней конечности. Величина плеча силы тяжести в различные периоды шага меняется (Рис.5.83). В середине одноопорного периода длина ее плеча во фронтальной плоскости составляет 10.99 см (16-ая фаза), в конце 11.06 см (31-ая фаза). Противодействуют силе тяжести отводящие мышцы. Выделяют две их группы 1) пельвиотрохантерная: средняя, малая ягодичные и грушевидная мышца, 2) спинокруральная: мышца, напрягающая широкой фасции бедра, прямая мышца бедра и портняжная. Расчеты показывают, что в одноопорный период шага на ГБК опорной нижней конечности действует сила равная утроенной массе тела. С учетом динамических сил, возникающих при ходьбе, сила, воздействующая на ГБК, возрастает до величины равной прочти 4.5 массы тела. Силы, возникающие при ходьбе, стремятся повернуть таз в неопорную сторону, им противодействуют отводящие мышцы. При этом таз прижимается к ГБК за счет появляющейся горизонтальной силы. Своего максимума она достигает в 12 фазе и составляет приблизительно четвертую часть массы тела. С учетом динамического компонента горизонтальная сила достигает 43 кг при массе тела 58.7 кг (Pauwels F., 1965). 

Рис.5.81. Направление нагрузки на тазобедренный сустав в разные фазы шага.

Согласно N.Rydell (1966), F.Burny, R.Bourgois (1972) при ходьбе по ровной поверхности нагрузка на ГБК составляет 2.0Р, подъем по наклонной поверхности 2.5Р, а при быстрой ходьбе 4.5Р. По J.Paul «…точка приложения общей равнодействующей перемещается по поверхности головки бедренной кости и во время опоры нагрузка достигает величины свыше 400 кгс». Согласно литературным данным напряжения на поверхности ГБК при ходьбе 0.065–0.6 кгс/мм2 (Янсон Х.А., 1975).

«Общеизвестно, что силы, воздействующие на головку бедренной кости при ходьбе, в 2-3 раза превышают вес тела. Их величина зависит от скорости передвижения, массы тела, положения таза, туловища, конечностей» (Корнилов Н.В. и соавт., 1997).

По данным В.С.Шаргородского, Д.И.Кресного (1989) в одноопорном периоде шага равнодействующая сил приложенных к ТБС, пересекала сферу ГБК медиальнее срединно-сагиттальной плоскости, образуя с ней угол 29±2.7° и кзади фронтальной составляя с ней угол 9.0±1.0°.

Результирующая сил, действующих на ГБК, имеет два основных пика, соответствующих периодам перехода опоры с одной ноги на другую. Первый пик в момент касания пяткой опорной поверхности. Второй в момент отрыва мыска от опоры. При этом максимальная результирующая сила находится в пределах 3-4 кратного увеличения массы тела (Вильямс Д.Ф., Роуф Р., 1978).

При ходьбе перемещения центра нагрузки на ГБК наиболее выражены в сагиттальной плоскости и меньше во фронтальной. Нагрузка на ГБК передается через сферический конус, который описывается перемещением точки нагрузки (Диваков М.Г., 1990). 

Рис.5.82. Направление нагрузки на головку бедренной кости в разные фазы шага.

Равномерному распределению нагрузки на ГБК способствует синовия. «В момент шага, сопровождающегося сгибанием в тазобедренном суставе, возникает отрицательное давление, за счет которого происходит всасывание синовиальной жидкости в щелевидные промежутки, а также ее распределение на наиболее нагружаемые участки в верхне-заднем сегменте головки бедра. Последующий перенос тяжести тела на головку бедра передается уже через слой жидкости. Обладая несжимаемостью, жидкость распределяет нагрузку равномерно на всю поверхность сустава и тем самым предупреждает концентрацию давления на отдельном участке» (Рис.3.51, 3.60) (Неверов В.А., Шильников В.А., 1991). 

Рис.5.83. Изменение плеча силы тяжести в разные фазы шага.  

F.Pauwels, как известно, изучал нагрузку на ТБС действующую во фронтальной плоскости. Расчеты же величины нагрузки на ГБК в горизонтальной плоскости, при ходьбе, в период опоры на одну ногу, показали, что эта величина удваивается. Определение усилий в области ТБС при ходьбе в третьей плоскости позволяет существенно уточнить данные, полученные ранее F.Pauwels (Maquet P., Vu Anh Tuan, 1981). Вместе с тем данная задача еще далека от своего окончательного разрешения.


                                                                     

Автор:

Архипов С.В. – С.В. Архипов-Балтийский является псевдонимом, который использовался до начала 2006 года с целью более точной дифференцировки на научном поле.

Цитирование:

Архипов-Балтийский СВ. Рассуждение о морфомеханике. Норма. В 2 т. Т. 1. Гл. 1-4. - Испр. и доп. изд. Калининград, 2004. [aleph.rsl.ru]

Архипов-Балтийский СВ. Рассуждение о морфомеханике. Норма. В 2 т. Т. 2. Гл. 5-6. - Испр. и доп. изд. Калининград, 2004. [aleph.rsl.ru]

Примечания:

Первая крупная публикация автора, посвященная морфомеханике живых систем, биомеханике пояса нижних конечностей и связки головки бедра, ligamentum capitis femoris (LCF).

Ключевые слова

ligamentum capitis femorisligamentum teres, связка головки бедра, анатомия, морфомеханика, биомеханика

СОДЕРЖАНИЕ РЕСУРСА

Биомеханика и морфомеханика

Популярные статьи

КАТАЛОГ ЛИТЕРАТУРЫ О LCF

  Каталог литературы о LCF   (Библиографический разде: книги, статьи, ссылки, упоминания…) 21-й ВЕК https://kruglayasvyazka.blogspot.com/2024/10/21.html   20-й ВЕК https://kruglayasvyazka.blogspot.com/2024/10/20.html   19-й ВЕК https://kruglayasvyazka.blogspot.com/2024/10/19.html   18-й ВЕК https://kruglayasvyazka.blogspot.com/2024/10/18.html   17-й ВЕК https://kruglayasvyazka.blogspot.com/2024/10/17.html   16-й ВЕК https://kruglayasvyazka.blogspot.com/2024/10/16.html   11-15-й ВЕК https://kruglayasvyazka.blogspot.com/2024/10/11-15.html   1-10-й ВЕК https://kruglayasvyazka.blogspot.com/2024/10/1-10.html   Железный ВЕК (10 – 1-й век до совр. эры) https://kruglayasvyazka.blogspot.com/2024/10/blog-post_87.html   НЕОЛИТ И БРОНЗА (8,000 – 2,000 лет до совр. эры) https://kruglayasvyazka.blogspot.com/2024/10/8-2.html   СОДЕРЖАНИЕ РЕСУРСА КАТАЛОГИ И БИБЛИОГРАФИИ Учение о...

2025АрхиповСВ. ПОЧЕМУ ВОССТАНОВЛЕНИЕ ВЕРТЛУЖНОЙ ГУБЫ МОЖЕТ БЫТЬ НЕЭФФЕКТИВНО?

Тематический Интернет-журнал О круглой связке бедра Апрель, 2025 Почему восстановление вертлужной губы может быть НЕЭФФЕКТИВНО?: заметка о таинственной «темной материи» в тазобедренном суставе Архипов С.В., независимый исследователь, Йоенсуу, Финляндия Аннотация Восстановление и реконструкция вертлужной губы не предотвращает остеоартрит и нестабильность тазобедренного сустава при ходьбе в случае удлинения ligamentum capitis femoris . Заключение сделано на основании математических расчетов и анализа результатов экспериментов на механической модели. Ключевые слова: артроскопия, тазобедренный сустав, вертлужная губа, ligamentum capitis femoris, ligamentum teres, связка головки бедренной кости, реконструкция, восстановление Введение Почти 80% первичных артроскопий тазобедренного сустава включает восстановление вертлужной губы (2019 WestermannRW _ RosneckJT ). Реконструкция – наиболее распространенная процедура для устранения патологии вертлужной губы и при ревизионной артроскопии (2...

Эндопротез с LCF. Часть 1

  Эндопротезы с аналогом ligamentum capitis femoris как свидетельства смены парадигмы в артропластике: Систематический обзор Часть  1. История, материал и методы Архипов С.В., независимый исследователь, Йоенсуу, Финляндия  

К вопросу о видео и рентген-визуализации LCF

К вопросу о видео и рентген-визуализации связки головки бедренной кости Известно, что в начале одноопорного периода шага присутствует супинация и сгибание в тазобедренном суставе, articulatio coxae , бедра, а в его средине и конце имеет место наклон таза, pelvis , в неопорную сторону и приведение ( Bombelli R ., 1993). Вероятно, эти особенности нормальной ходьбы впервые подметили скульпторы Древней Греции.  Нами изучены отчеты Оптической системы анализа (захвата) движений (разработчик  компания Qualisys, обработка программой компании C-Motion )  при исследовании закономерностей ходьбы человека в норме. Установлено: начале одноопорного периода шага таз, pelvis , во фронтальной плоскости наклоняется вниз в медиальную сторону. При этом в опорном тазобедренном суставе, articulatio coxae , наблюдается приведение (Рис. 1). Рис. 1. Отчет Оптической системы анализа движений при исследовании закономерностей ходьбы человека в норме; вверху – график движения таза во фронтальной...

2021(a)АрхиповСВ_СкворцовДВ

  Ligamentum teres и ее аналог в эндопротезе тазобедренного сустава – необходимы или излишни? Архипов С.В., Скворцов Д.В. (перевод статьи: Arkhipov SV , Skvortsov DV . Ligamentum Teres and its Analog in the Hip Endoprosthesis–Necessary or Superfluous? A Systematic Review . MLTJ . 2021:11(2)301-10.)   РЕЗЮМЕ Общая информация. Вывих эндопротеза тазобедренного сустава остается частым и серьезным осложнением артропластических вмешательств. Одним из способов предотвращения смещения эндопротеза является интеграция в его конструкцию аналога ligamentum teres. Цель. Обзор международного опыта проектирования, разработки и установки эндопротезов тазобедренного сустава с нативной ligamentum teres или ее аналогом. Материал и методы. Систематический патентный и непатентный поиск и анализ публикаций об эндопротезах тазобедренного сустава с нативной ligamentum teres или ее искусственным аналогом. Поиск проводился на соответствующих онлайн-платформах и в доступных библиотеках. ...