К основному контенту

НОВЫЕ ПУБЛИКАЦИИ

  Н ОВЫЕ ПУБЛИКАЦИИ РЕСУРСА      20 .06.2025 LCF на аккадском.   Первое в истории упоминание LCF на аккадском языке: « nim š u » .  LCF домашнего гуся. Часть 1.   Систематика домашнего гуся, обзор костной анатомии таза и бедра с акцентом на области крепления  LCF . 18 .06.2025 2025Copilot. Древний Египет.   Картина. Изображение об стоятельств и механизма травмы LCF.  17 .06.2025 2025ChatGPT . Современное искусство.   Картина. Изображение об стоятельств и механизма травмы LCF.  16 .06.2025 2025ChatGPT. Барокко.   Картина. Изображение об стоятельств и механизма травмы LCF.  15 .06.2025 Связка головки бедра – мистический элемент тазобедренного сустава.   Фильм, содержащий лекцию «Фундамент Учения о связке головки бедра». 01 .06.2025 Публикации о LCF в 2025 году (Май) . Статьи и книги с упоминанием LCF опубликованные в мае 2025 года. 30 .05.2025 Модель и протез.   Публикация в гр уппе faceboo k. 26 .05.202...

Моделирование движений: исходное одноопорное положение

 

Моделирование движений: исходное одноопорное положение

Для дальнейших экспериментальных исследований нами собрана модифицированная механическая модель тазобедренного сустава человека. Конструкция содержала бедренную часть и объемную тазовую часть с нагрузкой 1 кг. Она моделировала действие веса тела и прикреплялась к крайнему отверстию грузового кронштейна, находящемуся на уровне изображения межпозвонкового диска L5-S1 позади плоскости объемной тазовой части. Груз воспроизводил общий центр масс тела, локализующийся медиальнее, выше и позади от тазобедренного сустава, articulatio coxae.  

Модель содержала аналог связки головки бедренной кости, аналог вертикальной и горизонтальной части подвздошно-бедренной связки, аналог седалищно-бедренной связки и аналог лобково-бедренной связки. Кроме этого, конструкция имитировала четыре основные группы мышц тазобедренного сустава, articulatio coxae. С латеральной стороны от шарнира модели располагался аналог средней ягодичной мышцы, который воспроизводил одноименную мышцу – musculus gluteus medius, ответственную за отведение и пронацию. Позади, на уровне шарнира модели находился аналог комплекса коротких мышц, вращающих бедро наружу. Данный элемент воспроизводил функцию квадратной мышцы бедра, musculus quadratus femoris, верхней и нижней близнецовых мышц, musculus gemellus superior et musculus gemellus inferior, и наружной запирающей мышцы, musculus obturatorius externus. Позади, ниже уровня шарнира модели прикреплялся аналог комплекса задней группы мышц бедра. Он моедировал функцию полусухожильной мышцы, musculus semitendinosus, полуперепончатой мышцы, musculus semimembranosus, и длинной головки, caput longum, двуглавой мышцы бедра, musculus biceps femoris. Впереди, ниже уровня шарнира, локализовался аналог прямой мышцы бедра, musculus rectus femoris, одной из крупнейших головок четырехглавой мышцы бедра, musculus quadriceps femoris, ответственной за сгибание в тазобедренном суставе, articulatio coxae.  

Настоящим разделом мы начинаем описание серии экспериментальных исследований функции связок и мышц при моделировании основных видов вращательных движений в тазобедренном суставе, articulatio coxae. Ниже мы подробно будем обсуждать полученные в опытах результаты имитации приведения, отведения, сгибания, разгибания, супинации и пронации. Особенностью экспериментов явилось моделирование указанных движений в одноопорной ортостатической позе.

Изначально на модифицированной механической модели тазобедренного сустава человека с нагруженной объемной тазовой частью мы воспроизвели исходное положение. Оно имитировало напряженную одноопорную ортостатическую позу. Для нее характерно приведение, среднее положение между сгибанием и разгибанием, а также среднее положение между пронацией и супинацией в тазобедренном суставе, articulatio coxae. С целью воссоздания означенной позиции бедренная часть модели была установлена вертикально в сагиттальной плоскости, а затем отклонена наружу во фронтальной плоскости на угол 10° без поворота вокруг вертикальной оси в горизонтальной плоскости.

Изначально нами воспроизведена симметричная двухопорная ортостатическая поза. Для стабилизации объемной тазовой части модели использован подъемник. Наконечник его вертикального стержня упирался снизу в опорный кронштейн объемной тазовой части модели и препятствовал ее отклонению во фронтальной и сагиттальной плоскости. Подъемник объемной тазовой части и бедренная часть модели имитировали опорные нижние конечности. Затем подъемник объемной тазовой части удалялся, что моделировало переход от симметричной двухопорной ортостатической позы к напряженной одноопорной ортостатической позе.

Положение объемной тазовой части модели фиксировалось посредством укорочения аналогов мышц, а также за счет спонтанного натяжения аналогов связок. При этом длина элементов крепления аналогов мышц отрегулирована так, что изображения крыльев подвздошных костей, ala ossis ilii, тазового элемента модели находились приблизительно на одной высоте (Рис. 1).


Рис. 1. Моделирование исходного положения – напряженной одноопорной ортостатической позы на модифицированной механической модели тазобедренного сустава человека с нагруженной объемной тазовой частью с аналогами связок и мышц; вверху – вид спереди, внизу – вид сзади.

В сагиттальной плоскости объемная тазовая часть модели устанавливалась вертикально, без поворота в горизонтальной плоскости (Рис. 2).


Рис. 2. Моделирование исходного положения – напряженной одноопорной ортостатической позы на модифицированной механической модели тазобедренного сустава человека с нагруженной объемной тазовой частью с аналогами связок и мышц; вверху – вид сверху, внизу – вид с латеральной стороны.

Длинная ось вертлужного элемента объемной тазовой части модели была направлена назад, вверх и в медиальную сторону. В шарнире модели присутствовало среднее положение между разгибанием и сгибанием, среднее положение между пронацией и супинацией, а также среднее положение между приведением и отведением.

Для удержания в объемной тазовой части в описанной выше позиции оказалось достаточно только усилия аналога средней ягодичной мышцы (Рис. 3).

a

b

c

d
Рис. 3. Динамометры аналогов мышц модифицированной механической модели тазобедренного сустава человека с нагруженной объемной тазовой частью (моделирование исходного положения – напряженной одноопорной ортостатической позы)a – динамометр аналога средней ягодичной мышцыb – динамометр аналога прямой мышцы бедра, c – динамометр аналога комплекса коротких мышц, вращающих бедро наружу, d – динамометр аналога комплекса задней группы мышц бедра.


Динамометр аналога средней ягодичной мышцы зафиксировал усилие 1.9 кг. Динамометры аналога комплекса коротких мышц, вращающих бедро наружу, аналога прямой мышцы бедра и аналога комплекса задней группы мышц бедра не регистрировали усилия. Аналог средней ягодичной мышцы удерживал объемную тазовую часть модели во фронтальной плоскости, препятствуя спонтанному наклону вниз в медиальную сторону. Вместе с тем при попытке отклонения объемной тазовой части модели в горизонтальной и сагиттальной плоскости показания динамометра аналога средней ягодичной мышцы увеличивались. Указанное засвидетельствовало, что аналог средней ягодичной мышцы участвовал в обеспечении покоя объемной тазовой части модели не только во фронтальной, но и в горизонтальной и сагиттальной плоскости.

После стабилизации объемной тазовой части проанализирована ориентация аналогов связок и степень их натяжения (Рис. 4).

a

b

c

d
Рис. 4. Аналоги связок модифицированной механической модели тазобедренного сустава человека с нагруженной объемной тазовой частью (моделирование исходного положения – напряженной одноопорной ортостатической позы); a – вид спереди, b – вид сзади, c – вид с латеральной стороны, d – вид сверху; условные обозначения: liv - вертикальная часть аналога подвздошно-бедренной связки, ligamentum iliofemoralelih – горизонтальная часть аналога подвздошно-бедренной связки, ligamentum iliofemoraleli – аналог седалищно-бедренной связки, ligamentum ischiofemoralelp – аналог лобково-бедренной связки, ligamentum pubofemoralelcf – проксимальная часть аналога связки головки бедренной кости, ligamentum capitis femoris.

Отмечено натяжение только аналога лобково-бедренной связки. Прочие аналоги наружных связок оказались не натянуты. Это отмечалось по их плавным изгибам без прижатия к элементам бедренной части модели.

Визуально уточнить наличие или отсутствие натяжения аналога связки головки бедренной кости не представлялось возможным ввиду его расположения внутри шарнира модели. При попытке извлечения проксимального конца аналога связки головки бедренной кости из вертлужного элемента он ограниченно смещался в медиальном направлении. Это указывало на отсутствие его натяжения. Разобщения сферической головки бедренной части модели и ответной сферической поверхности вертлужного элемента модели не наблюдалось.

Аналог лобково-бедренной связки натягивался спонтанно под действием веса объемной тазовой части модели. Общий центр масс системы располагался выше, медиальнее и позади от центра вращения шарнира. Означенное приводило к отклонению назад в сагиттальной плоскости объемной тазовой части модели. Установлено, что натянутый аналог лобково-бедренной связки участвовал в ограничении поворота объемной тазовой части модели вперед в горизонтальной плоскости и отклонении назад в сагиттальной плоскости. При этом названый гибкий элемент стопорил шарнир модели в сагиттальной и горизонтальной плоскости. Он препятствовал воспроизведению в шарнире модели разгибания и пронации. Самопроизвольному наклону объемной тазовой части модели вниз в медиальную сторону противодействовал аналог средней ягодичной мышцы. Кроме сил реакции натянутого аналога лобково-бедренной связки и укороченного аналога средней ягодичной мышцы, для поддержания модели в положении покоя не требовалось дополнительного внешнего усилия.

Эксперимент продемонстрировал возможность поддержания напряженной одноопорной ортостатической позы только за счет средней ягодичной мышцы, musculus gluteus medius. Это согласуется с существующими представлениями о биомеханике одноопорных ортостатических поз. Опытным путем мы установили, что в напряженной одноопорной ортостатической позе стабилизация таза, pelvis, в горизонтальной, фронтальной и сагиттальной плоскости может быть достигнута натяжением лобково-бедренной связки, ligamentum pubofemorale, в сочетании с напряжением средней ягодичной мышцы, musculus gluteus medius. Прочие связки в данной позе не натянуты, а мышцы могут быть расслаблены, эпизодически напрягаясь для контроля баланса тела. 


Смотри также:

а) Базовые эксперименты на электромеханической модели 

Бедренная часть комбинированной модели тазобедренного сустава 

Элементы электромеханической модели тазобедренного сустава человека

Моделирование функции LCF 

Моделирование действия веса тела 

Имитация взаимодействия средней ягодичной мышцы и LCF 

Анализ взаимодействия средней ягодичной мышцы и LCF

б) Модифицированная механическая модель

Конструкция модифицированной механической модели тазобедренного сустава   

                                                                     

Критика

Главным недочетом описанных ранее конструкций, по нашему мнению, являлась недостаточная упругость аналогов связок. В описанной конструкции мы использовали гибкий элемент - аналог LCF, выполненный из металла и усовершенствовали способ его крепления. В норме LCF присоединяется к вертлужной впадине в нескольких точках, что нам воспроизвести не удалось. Кроме этого, основой бедренной части модели явился субтотальный эндопротез тазобедренного сустава. Мы согласны с тем, что данное медицинское изделие лишь отчасти воспроизводит проксимальный отдел нативной бедренной кости. 


Примечания

Экспериментальные исследования на обсуждаемой модели начались в 2009 году. Полная сборка конструкции описана в заявка на изобретение RU2009124926A. Впервые полную версию представленного выше экспериментального материала мы опубликовали в двадцатой главе четвертого тома монографии с юмором названой «Биомеханика пингвинов» (2018) [academia.edu]. Данная работа написана для личного использования и узкого круга лиц. В книге собраны, систематизированы и проанализированы результаты 25-ти лет изучения ligamentum capitis femoris и смежных тем. 
Расшифровку цитированных источников смотри в Списке литературы.

Первоисточник

Архипов СВ. Биомеханика пингвинов: заметки к вопросу о причинах ковыляющей походки и перспективах ее ремоделирования во имя обретения грациозности, сочиненные врачом, к.м.н. Сергеем Васильевичем Архиповым, в бытность им с 1992-го по 2017-й год хирургом и травматологом-ортопедом, по вдохновению в 1991-ом году его сестрою Еленой Васильевной, со светлой любовью к ней и благодарностью! Манускрипт в 5 томах. Т. 4. Главы 17-21. Напечатано Автором во граде Королев при попечении его супруги Людмилы Николаевны, ММXVIII A.D. [2018], bonum factum! [на благо и счастье], 549 с. [academia.edu]


Ключевые слова

ligamentum teres, ligamentum capitis femoris, связка головки бедра, эксперимент, механическая модель, средняя ягодичная мышца, короткие ротаторы, сгибатели, разгибатели

 СОДЕРЖАНИЕ РЕСУРСА

Эксперименты и наблюдения

1991-2021АрхиповСВ


Популярные статьи

КАТАЛОГ ЛИТЕРАТУРЫ О LCF

  Каталог литературы о LCF   (Библиографический разде: книги, статьи, ссылки, упоминания…) 21-й ВЕК https://kruglayasvyazka.blogspot.com/2024/10/21.html   20-й ВЕК https://kruglayasvyazka.blogspot.com/2024/10/20.html   19-й ВЕК https://kruglayasvyazka.blogspot.com/2024/10/19.html   18-й ВЕК https://kruglayasvyazka.blogspot.com/2024/10/18.html   17-й ВЕК https://kruglayasvyazka.blogspot.com/2024/10/17.html   16-й ВЕК https://kruglayasvyazka.blogspot.com/2024/10/16.html   11-15-й ВЕК https://kruglayasvyazka.blogspot.com/2024/10/11-15.html   1-10-й ВЕК https://kruglayasvyazka.blogspot.com/2024/10/1-10.html   Железный ВЕК (10 – 1-й век до совр. эры) https://kruglayasvyazka.blogspot.com/2024/10/blog-post_87.html   НЕОЛИТ И БРОНЗА (8,000 – 2,000 лет до совр. эры) https://kruglayasvyazka.blogspot.com/2024/10/8-2.html   СОДЕРЖАНИЕ РЕСУРСА КАТАЛОГИ И БИБЛИОГРАФИИ Учение о...

2025АрхиповСВ. ПОЧЕМУ ВОССТАНОВЛЕНИЕ ВЕРТЛУЖНОЙ ГУБЫ МОЖЕТ БЫТЬ НЕЭФФЕКТИВНО?

Тематический Интернет-журнал О круглой связке бедра Апрель, 2025 Почему восстановление вертлужной губы может быть НЕЭФФЕКТИВНО?: заметка о таинственной «темной материи» в тазобедренном суставе Архипов С.В., независимый исследователь, Йоенсуу, Финляндия Аннотация Восстановление и реконструкция вертлужной губы не предотвращает остеоартрит и нестабильность тазобедренного сустава при ходьбе в случае удлинения ligamentum capitis femoris . Заключение сделано на основании математических расчетов и анализа результатов экспериментов на механической модели. Ключевые слова: артроскопия, тазобедренный сустав, вертлужная губа, ligamentum capitis femoris, ligamentum teres, связка головки бедренной кости, реконструкция, восстановление Введение Почти 80% первичных артроскопий тазобедренного сустава включает восстановление вертлужной губы (2019 WestermannRW _ RosneckJT ). Реконструкция – наиболее распространенная процедура для устранения патологии вертлужной губы и при ревизионной артроскопии (2...

Эндопротез с LCF. Часть 1

  Эндопротезы с аналогом ligamentum capitis femoris как свидетельства смены парадигмы в артропластике: Систематический обзор Часть  1. История, материал и методы Архипов С.В., независимый исследователь, Йоенсуу, Финляндия  

К вопросу о видео и рентген-визуализации LCF

К вопросу о видео и рентген-визуализации связки головки бедренной кости Известно, что в начале одноопорного периода шага присутствует супинация и сгибание в тазобедренном суставе, articulatio coxae , бедра, а в его средине и конце имеет место наклон таза, pelvis , в неопорную сторону и приведение ( Bombelli R ., 1993). Вероятно, эти особенности нормальной ходьбы впервые подметили скульпторы Древней Греции.  Нами изучены отчеты Оптической системы анализа (захвата) движений (разработчик  компания Qualisys, обработка программой компании C-Motion )  при исследовании закономерностей ходьбы человека в норме. Установлено: начале одноопорного периода шага таз, pelvis , во фронтальной плоскости наклоняется вниз в медиальную сторону. При этом в опорном тазобедренном суставе, articulatio coxae , наблюдается приведение (Рис. 1). Рис. 1. Отчет Оптической системы анализа движений при исследовании закономерностей ходьбы человека в норме; вверху – график движения таза во фронтальной...

2021(a)АрхиповСВ_СкворцовДВ

  Ligamentum teres и ее аналог в эндопротезе тазобедренного сустава – необходимы или излишни? Архипов С.В., Скворцов Д.В. (перевод статьи: Arkhipov SV , Skvortsov DV . Ligamentum Teres and its Analog in the Hip Endoprosthesis–Necessary or Superfluous? A Systematic Review . MLTJ . 2021:11(2)301-10.)   РЕЗЮМЕ Общая информация. Вывих эндопротеза тазобедренного сустава остается частым и серьезным осложнением артропластических вмешательств. Одним из способов предотвращения смещения эндопротеза является интеграция в его конструкцию аналога ligamentum teres. Цель. Обзор международного опыта проектирования, разработки и установки эндопротезов тазобедренного сустава с нативной ligamentum teres или ее аналогом. Материал и методы. Систематический патентный и непатентный поиск и анализ публикаций об эндопротезах тазобедренного сустава с нативной ligamentum teres или ее искусственным аналогом. Поиск проводился на соответствующих онлайн-платформах и в доступных библиотеках. ...