К основному контенту

НОВЫЕ ПУБЛИКАЦИИ

  Н ОВЫЕ ПУБЛИКАЦИИ РЕСУРСА      20 .06.2025 LCF на аккадском.   Первое в истории упоминание LCF на аккадском языке: « nim š u » .  LCF домашнего гуся. Часть 1.   Систематика домашнего гуся, обзор костной анатомии таза и бедра с акцентом на области крепления  LCF . 18 .06.2025 2025Copilot. Древний Египет.   Картина. Изображение об стоятельств и механизма травмы LCF.  17 .06.2025 2025ChatGPT . Современное искусство.   Картина. Изображение об стоятельств и механизма травмы LCF.  16 .06.2025 2025ChatGPT. Барокко.   Картина. Изображение об стоятельств и механизма травмы LCF.  15 .06.2025 Связка головки бедра – мистический элемент тазобедренного сустава.   Фильм, содержащий лекцию «Фундамент Учения о связке головки бедра». 01 .06.2025 Публикации о LCF в 2025 году (Май) . Статьи и книги с упоминанием LCF опубликованные в мае 2025 года. 30 .05.2025 Модель и протез.   Публикация в гр уппе faceboo k. 26 .05.202...

Моделирование напряженной одноопорной ортостатической позы с участием средней ягодичной мышцы и коротких ротаторов бедра

  

Моделирование напряженной одноопорной ортостатической позы с участием средней ягодичной мышцы и коротких ротаторов бедра 

Одноопорные ортостатические позы принято подразделять на «сильный» и «слабый» тип стойки (Беленький В.Е., 1962). С нашей точки зрения их более уместно называть соответственно «напряженная» и «ненапряженная» одноопорная ортостатическая поза. Для напряженной одноопорной ортостатической позы характерна горизонтальная позиция таза, pelvis. В ненапряженной одноопорной ортостатической позе наблюдается меньшее напряжение мышц опорной ноги и наклон таза, pelvis, в неопорную сторону (Arkhipov S.V., 2008) (Рис. 1).

Рис. 1. Основные типы одноопорной ортостатической позы; слева – ненапряженная, справа – напряженная.


В одноопорной ортостатической позе опорная нога, как правило, выпрямлена. Она разогнута и приведена в тазобедренном суставе, articulatio coxae, а также разогнута в коленном суставе, articulatio genum. Вторая нога – неопорная. Она согнута в коленном суставе, articulatio genum, а также согнута, повернута наружу и отведена в тазобедренном суставе, articulatio coxae.

Данные типы вертикальной позы характеризуются наибольшей устойчивостью и комфортностью по сравнению с иными экзотическими одноопорными ортостатическими положениями. Вместе с тем для поддержания напряженной одноопорной ортостатической позы требуется заметно больше мышечное усилие опорной ноги. В ненапряженной одноопорной ортостатической позе отмечается меньшее напряжение мышц опорной ноги, но большее натяжение связок, прежде всего тазобедренного сустава, articulatio coxae. По нашему мнению, это происходит в связи со стопорением тазобедренного сустава, articulatio coxae, и коленного сустава, articulatio genum, ног посредством натянутых связок.

Согласно существующим представлениям о биомеханике тазобедренного сустава, articulatio coxae, считается, что поддержание ортостатических поз во фронтальной плоскости обеспечивается только мышцами (Беленький В.Е., 1962; Pauwels F., 1965; Янсон Х.А., 1975; Bombelli R., 1993; Шаповалов В.М. и соавт., 1998). При этом связка головки бедренной кости, ligamentum capitis femoris, не упоминается как функциональная связь тазобедренного сустава, articulatio coxae. Сила ее реакции не учитывается при расчетах нагрузки на головку бедренной кости, ligamentum capitis femoris. Задачей настоящих экспериментальных исследований явилось дальнейшее уточнение функции связок тазобедренного сустава, articulatio coxae, прежде всего их роль в поддержании разных типов одноопорной вертикальной позы.

При изучении эффекта авторотации нами отмечено, что комплекс коротких мышц, вращающих бедро наружу, может участвовать в стабилизации таза, pelvis, в горизонтальной и фронтальной плоскости. Основываясь на данных наблюдениях, мы смоделировали напряженную одноопорную ортостатическую позу с воспроизведением активности аналога комплекса коротких мышц, вращающих бедро наружу, и аналога средней ягодичной мышцы.

Эксперимент поставлен на электромеханической модели тазобедренного сустава человека с нагруженной объемной тазовой частью. Конструкция содержала аналог комплекса коротких мышц, вращающих бедро наружу, аналог средней ягодичной мышцы, аналоги связок тазобедренного сустава: аналог вертикальной части подвздошно-бедренной связки, аналог горизонтальной части подвздошно-бедренной связки, аналог седалищно-бедренной связки, аналог лобково-бедренной связки и аналог связки головки бедренной кости. Для воспроизведения естественного положения общего центра масс тела, находящегося на уровне верхнего края крестца, os sacrum, выше, позади и медиальнее опорного тазобедренного сустава, articulatio coxae, к крайнему отверстию грузового кронштейна объемной тазовой части модели присоединялась нагрузка массой 1 кг. В отдельных случаях для стабилизации объемной тазовой части модели использовался подъемник, имитировавший контралатеральную нижнюю конечность.

Изначально на электромеханической модели тазобедренного сустава воспроизводилась симметричная двухопорная ортостатическая поза. При этом объемная тазовая часть модели опиралась на бедренную часть модели и подъемник, имитировавший противоположную нижнюю конечность. Затем подъемник объемной тазовой части удалялся. По нашему замыслу указанное воспроизводило переход от симметричной двухопорной ортостатической позы к напряженной одноопорной ортостатической позе. Объемная тазовая часть модели стабилизировалась аналогом средней ягодичной мышцы и аналогом лобково-бедренной связки. Данные элементы противодействовали весу нагрузки, прикрепленной к крайнему отверстию грузового кронштейна объемной тазовой части. Далее уменьшалась длина аналога комплекса коротких мышц, вращающих бедро наружу. Это воспроизвело на модели напряженное состояние указанной группы мышц.

Положение объемной тазовой части модели регулировалось длиной обоих аналогов мышц. Они укорачивались так, что изображения крыльев подвздошных костей, ala ossis ilii, тазового элемента модели находились на одном уровне (Рис. 2).


Рис. 2. Моделирование напряженной одноопорной ортостатической позы на электромеханической модели тазобедренного сустава человека с нагруженной объемной тазовой частью с аналогами связок и мышц (воспроизведено напряжение аналога средней ягодичной мышцы и аналога комплекса коротких мышц, вращающих бедро наружу); вверху – вид спереди, внизу – вид сзади.

В обсуждаемом эксперименте объемная тазовая часть модели стабилизировалась прежде всего, укороченным аналогом комплекса коротких мышц, вращающих бедро наружу, и аналогом средней ягодичной мышцы. В горизонтальной плоскости тазовый элемент объемной тазовой части модели располагался перпендикулярно переднезадней оси, а в сагиттальной плоскости несколько отклонялся назад (Рис. 3).


Рис. 3. Моделирование напряженной одноопорной ортостатической позы на электромеханической модели тазобедренного сустава человека с нагруженной объемной тазовой частью с аналогами связок и мышц (воспроизведено напряжение аналога средней ягодичной мышцы и аналога комплекса коротких мышц, вращающих бедро наружу); вверху – вид сверху, внизу – вид с латеральной стороны.

Длинная ось вертлужного элемента объемной тазовой части модели была направлена назад, вверх и в медиальную сторону. В шарнире модели в сагиттальной плоскости присутствовало разгибание, среднее положение между пронацией и супинацией, а также среднее положение между приведением и отведением. Динамометр аналога комплекса коротких мышц, вращающих бедро наружу, зарегистрировал усилие 1.1 кг, а динамометр аналога средней ягодичной мышцы – 1.0 кг (Рис. 4).

a

b

c

d
Рис. 4. Аналоги связок и динамометры электромеханической модели тазобедренного сустава человека с нагруженной объемной тазовой частью (моделирование напряженной одноопорной ортостатической позы с воспроизведением напряжения аналога средней ягодичной мышцы и аналога комплекса коротких мышц, вращающих бедро наружу); a – вид спереди, b – вид сзади, c – вид с латеральной стороны, d – вид сверху; условные обозначения: liv - вертикальная часть аналога подвздошно-бедренной связки, ligamentum iliofemoralelih – горизонтальная часть аналога подвздошно-бедренной связки, ligamentum iliofemoraleli – аналог седалищно-бедренной связки, ligamentum ischiofemoralelp – аналог лобково-бедренной связки, ligamentum pubofemorale.

После стабилизации объемной тазовой части модели проанализировано соотношение в шарнире, ориентация аналогов связок и степень их натяжения. Отмечено натяжение только аналога лобково-бедренной связки. Прочие аналоги наружных связок небыли натянуты. Указанное подтверждалось их плавными изгибами без прижатия к элементам бедренной части модели. При попытке извлечения проксимального конца аналога связки головки бедренной кости из вертлужного элемента он ограниченно смещался в медиальном направлении. Это указывало на отсутствие его натяжения. Разобщения сферической головки шарнира и ответной сферической поверхности вертлужного элемента модели не наблюдалось.

По причине расположения общего центра масс системы позади от центра вращения шарнира объемная тазовая часть модели отклонялась назад в сагиттальной плоскости. Означенное приводило к натяжению аналога лобково-бедренной связки. Он стабилизировал объемную тазовую часть модели в сагиттальной плоскости, ограничивая разгибание в шарнире.

Отклонению объемной тазовой части модели вниз в медиальную сторону препятствовал аналог средней ягодичной мышцы и аналог комплекса коротких мышц, вращающих бедро наружу. Кроме сил реакции натянутого аналога лобково-бедренной связки, аналога комплекса коротких мышц, вращающих бедро наружу, и аналога средней ягодичной мышцы, для поддержания модели в положении покоя не требовалось дополнительного внешнего усилия.

Замечено, что для поддержания объемной тазовой части в положении устойчивого равновесия при участии аналога комплекса коротких мышц, вращающих бедро наружу, усилие, которое приходилось на аналог средней ягодичной мышцы, уменьшалось. Описанный эксперимент продемонстрировал возможность поддержания напряженной одноопорной ортостатической позы за счет одновременного напряжения комплекса коротких мышц, вращающих бедро наружу, и средней ягодичной мышцы. Выяснено: усилие средней ягодичной мышцы, musculus gluteus medius, может быть уменьшено за счет напряжения комплекса коротких мышц, вращающих бедро наружу. 


Смотри также:

Бедренная часть комбинированной модели тазобедренного сустава 

Элементы электромеханической модели тазобедренного сустава человека

Электромеханическая модель без аналогов связок

Упрощение электромеханической модели тазобедренного сустава

Моделирование движений аналога LCF 

Упрощенная модель вертлужной впадины 

Модель как аналог рычага третьего рода 

Моделирование функции LCF 

Моделирование действия веса тела 

Имитация взаимодействия средней ягодичной мышцы и LCF 

Анализ взаимодействия средней ягодичной мышцы и LCF

Моделирование движений в горизонтальной плоскости 

Моделирование супинации 

Моделирование эффекта авторотации  

Обсуждение эффекта авторотации 

Моделирование перемещения общего центра масс тела 

Моделирование взаимодействия наружных связок и LCF 

Моделирование эффекта автостабилизации

Моделирование взаимодействия веса тела и отводящей группы мышц 

Эффект авторотации с аналогом отводящей группы мышц 

Измерение силы, вызывающей авторотацию 

Воспроизведение спонтанной авторотации

Воспроизведение управляемой авторотации  

Обсуждение регулируемого эффекта авторотации  

Моделирование взаимодействия аналогов связок и мышц 

Имитация перемещения общего центра масс тела при наличии аналогов связок и мышц 

Моделирование напряженной одноопорной позы с участием средней ягодичной мышцы

                                                                     

Критика

Главным недочетом описанных ранее конструкций, по нашему мнению, являлась недостаточная упругость аналогов связок. В описанной конструкции мы использовали гибкий элемент - аналог LCF, выполненный из металла и усовершенствовали способ его крепления. В норме LCF присоединяется к вертлужной впадине в нескольких точках, что нам воспроизвести не удалось. Кроме этого, основой бедренной части модели явился субтотальный эндопротез тазобедренного сустава. Мы согласны с тем, что данное медицинское изделие лишь отчасти воспроизводит проксимальный отдел нативной бедренной кости. 


Примечания

Экспериментальные исследования на обсуждаемой модели начались в 2009 году. Полная сборка конструкции описана в заявка на изобретение RU2009124926A. Впервые полную версию представленного выше экспериментального материала мы опубликовали в шестнадцатой главе третьего тома монографии с юмором названой «Биомеханика пингвинов» (2018) [academia.edu]. Данная работа написана для личного использования и узкого круга лиц. В книге собраны, систематизированы и проанализированы результаты 25-ти лет изучения ligamentum capitis femoris и смежных тем. 
Расшифровку цитированных источников смотри в Списке литературы.

Первоисточник

Архипов СВ. Биомеханика пингвинов: заметки к вопросу о причинах ковыляющей походки и перспективах ее ремоделирования во имя обретения грациозности, сочиненные врачом, к.м.н. Сергеем Васильевичем Архиповым, в бытность им с 1992-го по 2017-й год хирургом и травматологом-ортопедом, по вдохновению в 1991-ом году его сестрою Еленой Васильевной, со светлой любовью к ней и благодарностью! Манускрипт в 5 томах. Т. 3. Главы 12-16. Напечатано Автором во граде Королев при попечении его супруги Людмилы Николаевны, ММXVIII A.D. [2018], bonum factum! [на благо и счастье], 518 с. [academia.edu]


Ключевые слова

ligamentum capitis femorisligamentum teres, связка головки бедра, функция, поза, эксперимент, электромеханическая модель, средняя ягодичная мышца, короткие ротаторы

 СОДЕРЖАНИЕ РЕСУРСА

Эксперименты и наблюдения

1991-2021АрхиповСВ


Популярные статьи

КАТАЛОГ ЛИТЕРАТУРЫ О LCF

  Каталог литературы о LCF   (Библиографический разде: книги, статьи, ссылки, упоминания…) 21-й ВЕК https://kruglayasvyazka.blogspot.com/2024/10/21.html   20-й ВЕК https://kruglayasvyazka.blogspot.com/2024/10/20.html   19-й ВЕК https://kruglayasvyazka.blogspot.com/2024/10/19.html   18-й ВЕК https://kruglayasvyazka.blogspot.com/2024/10/18.html   17-й ВЕК https://kruglayasvyazka.blogspot.com/2024/10/17.html   16-й ВЕК https://kruglayasvyazka.blogspot.com/2024/10/16.html   11-15-й ВЕК https://kruglayasvyazka.blogspot.com/2024/10/11-15.html   1-10-й ВЕК https://kruglayasvyazka.blogspot.com/2024/10/1-10.html   Железный ВЕК (10 – 1-й век до совр. эры) https://kruglayasvyazka.blogspot.com/2024/10/blog-post_87.html   НЕОЛИТ И БРОНЗА (8,000 – 2,000 лет до совр. эры) https://kruglayasvyazka.blogspot.com/2024/10/8-2.html   СОДЕРЖАНИЕ РЕСУРСА КАТАЛОГИ И БИБЛИОГРАФИИ Учение о...

2025АрхиповСВ. ПОЧЕМУ ВОССТАНОВЛЕНИЕ ВЕРТЛУЖНОЙ ГУБЫ МОЖЕТ БЫТЬ НЕЭФФЕКТИВНО?

Тематический Интернет-журнал О круглой связке бедра Апрель, 2025 Почему восстановление вертлужной губы может быть НЕЭФФЕКТИВНО?: заметка о таинственной «темной материи» в тазобедренном суставе Архипов С.В., независимый исследователь, Йоенсуу, Финляндия Аннотация Восстановление и реконструкция вертлужной губы не предотвращает остеоартрит и нестабильность тазобедренного сустава при ходьбе в случае удлинения ligamentum capitis femoris . Заключение сделано на основании математических расчетов и анализа результатов экспериментов на механической модели. Ключевые слова: артроскопия, тазобедренный сустав, вертлужная губа, ligamentum capitis femoris, ligamentum teres, связка головки бедренной кости, реконструкция, восстановление Введение Почти 80% первичных артроскопий тазобедренного сустава включает восстановление вертлужной губы (2019 WestermannRW _ RosneckJT ). Реконструкция – наиболее распространенная процедура для устранения патологии вертлужной губы и при ревизионной артроскопии (2...

Эндопротез с LCF. Часть 1

  Эндопротезы с аналогом ligamentum capitis femoris как свидетельства смены парадигмы в артропластике: Систематический обзор Часть  1. История, материал и методы Архипов С.В., независимый исследователь, Йоенсуу, Финляндия  

К вопросу о видео и рентген-визуализации LCF

К вопросу о видео и рентген-визуализации связки головки бедренной кости Известно, что в начале одноопорного периода шага присутствует супинация и сгибание в тазобедренном суставе, articulatio coxae , бедра, а в его средине и конце имеет место наклон таза, pelvis , в неопорную сторону и приведение ( Bombelli R ., 1993). Вероятно, эти особенности нормальной ходьбы впервые подметили скульпторы Древней Греции.  Нами изучены отчеты Оптической системы анализа (захвата) движений (разработчик  компания Qualisys, обработка программой компании C-Motion )  при исследовании закономерностей ходьбы человека в норме. Установлено: начале одноопорного периода шага таз, pelvis , во фронтальной плоскости наклоняется вниз в медиальную сторону. При этом в опорном тазобедренном суставе, articulatio coxae , наблюдается приведение (Рис. 1). Рис. 1. Отчет Оптической системы анализа движений при исследовании закономерностей ходьбы человека в норме; вверху – график движения таза во фронтальной...

2021(a)АрхиповСВ_СкворцовДВ

  Ligamentum teres и ее аналог в эндопротезе тазобедренного сустава – необходимы или излишни? Архипов С.В., Скворцов Д.В. (перевод статьи: Arkhipov SV , Skvortsov DV . Ligamentum Teres and its Analog in the Hip Endoprosthesis–Necessary or Superfluous? A Systematic Review . MLTJ . 2021:11(2)301-10.)   РЕЗЮМЕ Общая информация. Вывих эндопротеза тазобедренного сустава остается частым и серьезным осложнением артропластических вмешательств. Одним из способов предотвращения смещения эндопротеза является интеграция в его конструкцию аналога ligamentum teres. Цель. Обзор международного опыта проектирования, разработки и установки эндопротезов тазобедренного сустава с нативной ligamentum teres или ее аналогом. Материал и методы. Систематический патентный и непатентный поиск и анализ публикаций об эндопротезах тазобедренного сустава с нативной ligamentum teres или ее искусственным аналогом. Поиск проводился на соответствующих онлайн-платформах и в доступных библиотеках. ...