К основному контенту

Бедренная часть комбинированной модели тазобедренного сустава


Бедренная часть комбинированной механической модели тазобедренного сустава 

С целью дальнейшего изучения роли связки головки бедренной кости, ligamentum capitis femoris, и биомеханики тазобедренного сустава, articulatio coxae, нами изготовлена комбинированная механическая модель правого тазобедренного сустава человека. Ее ключевыми особенностями стали: трехмерная бедренная часть, плоскостная тазовая часть и нерастяжимый аналог связки головки бедренной кости.

Бедренная часть модели закреплялась на плоском квадратном основании. Она была снабжена сферической головкой с аналогом связки головки бедренной кости (1). 

Рис. 1. Основание и бедренная часть комбинированной механической модели тазобедренного сустава человека с аналогом связки головки бедренной кости; обозначения: 1 – основание модели, 2 – бедренная часть модели, 3 – сферическая головка, 4 – отверстия в медиальном секторе сферической головки, 5 – аналог связки головки бедренной кости, 6 – нижний фасонный выступ, 7 – верхний фасонный выступ, 8 – карданное соединение, 9 – резьбовая шпилька.


Основание модели из жесткого полимера имело четыре резиновые ножки. Основой бедренной части модели явился ранее описанный однополюсной эндопротез тазобедренного суставаконструкции Томпсона (Thompson prosthesis), выполненный из нержавеющей стали (ASTM F 138). Он имел полированную пустотелую головку диаметром 54 мм, шейку эллипсовидной формы и изогнутую в плоскости ножку. Означенный эндопротез мы заключили в металлический корпус из жести, который снабдили двумя фасонными выступами. Верхний фасонный выступ имитировал большой вертел, trochanter major, нижний фасонный выступ – малый вертел, trochanter minor, бедренной кости, os femur. В медиальном секторе сферической головке выполнено два сквозных отверстия в направлении шейки, то есть изнутри-наружу, сверху-вниз (Рис. 2).

Рис. 2. Сферическая головка бедренной части комбинированной механической модели тазобедренного сустава человека (вид сверху с медиальной стороны).
  

Вышеозначенные отверстия располагались во фронтальной плоскости одно выше другого. Они являлись аналогами разной локализации ямки головки бедренной кости, fovea capitis femoris. В зависимости от задачи эксперимента через одно из отверстий в сферической головке пропускался аналог связки головки бедренной кости. Его мы выполнили из гибкого проволочного троса диаметром 0.2 см. Он был сплетен из стальных жил и покрыт тонким слоем полимера. Дистальный конец аналога связки головки бедренной кости прикреплялся к бедренной части модели внутри ее металлического корпуса.

Нижний конец бедренной части модели соединялся с основанием посредством карданного шарнира с резьбовыми фиксаторами (Рис. 3).


Рис. 3. Карданное соединение бедренной части комбинированной механической модели тазобедренного сустава человека с основанием модели; вверху – вид спереди, внизу – вид с латеральной стороны.


Для большей жесткости конструкции верхний конец бедренной части модели соединялся с основанием резьбовой шпилькой (Рис. 4).



Рис. 4. Бедренная часть комбинированной механической модели тазобедренного сустава человека с аналогом связки головки бедренной кости; вверху – вид спереди, в центре – вид с медиальной стороны, внизу – вид сзади.


На передней стороне металлического корпуса бедренной части модели нами прочерчена линия, обозначающая вертикальную продольная ось. На задней и передней поверхности металлического корпуса имелись резьбовые фиксаторы. Верхний и нижний фасонный выступ мы снабдили проушинами.

Бедренная часть модели соединялась с основанием таким образом, что ее сферическая головка была обращена вверх и в сторону основания, а продольная ось отклонялась в латеральную сторону во фронтальной плоскости (Рис. 5). 


Рис. 5. Основание и бедренная часть комбинированной механической модели тазобедренного сустава человека; вверху – вид спереди, внизу – вид сзади.

Означенное, по нашему замыслу, имитировало положение бедренной кости, os femur, при приведении в тазобедренном суставе, articulatio coxae.

Кроме этого, верхний конец бедренной части модели имел наклон вперед в сагиттальной плоскости (Рис. 6). 


Рис. 6. Основание и бедренная часть комбинированной механической модели тазобедренного сустава человека; вверху – вид с медиальной стороны, внизу – вид с латеральной стороны.

Указанное воспроизводило положение бедренной кости, os femur, при разгибании в тазобедренном суставе, articulatio coxae, в вертикальной позе.

В горизонтальной плоскости бедренная часть модели поворачивалась вперед на 15° (Рис. 7).

Рис. 7. Основание и бедренная часть комбинированной механической модели тазобедренного сустава человека (вид сверху), аналог связки головки бедренной кости пропущен через нижнее отверстие сферической головки бедренной части модели, повернутой вперед в горизонтальной плоскости.

Описанное имитировало позицию бедренной кости, os femur, при супинации в тазобедренном суставе, articulatio coxae.

На аналог связки головки бедренной кости мы нанесли отметку белой краской на расстоянии 20 мм от сферической головки. С целью визуализации положения бедренной части модели и аналога связки головки бедренной кости на верхней поверхности основания располагалась масштабно-координатная сетка (Рис. 8).

Рис. 8. Основание и бедренная часть комбинированной механической модели тазобедренного сустава человека; на верхней поверхности основания размещена масштабно-координатная сетка (вид спереди).

Ввиду упругости материала, из которого изготавливался аналог связки головки бедренной кости, он, выходя из отверстия в сферической головке, плавно изгибался вниз и был направлен в медиальную сторону (Рис. 9).


Рис. 9. Бедренная часть комбинированной механической модели тазобедренного сустава человека с аналогом связки головки бедренной кости, выходящий из верхнего отверстия медиального сектора головки; заметно его отклонение вниз и назад; вверху – вид сверху, внизу – вид с медиальной стороны.

В отдельных экспериментах для уточнения пространственного положения элементов комбинированной механической модели тазобедренного сустава человека она дополнялась вертикально расположенными перпендикулярными друг другу плоскостями. На них канцелярскими зажимами прикреплялись масштабно-координатные сетки (Рис. 10).

Рис. 10. Перпендикулярные друг другу плоскости с закрепленными на них масштабно-координатными сетками.

С учетом расположенной на основании масштабно-координатной сетки образовывалась трехмерная система для измерения линейного и углового отклонения элементов комбинированной механической модели тазобедренного сустава человека (Рис. 11).


Рис. 11. Основание и бедренная часть комбинированной механической модели тазобедренного сустава человека, снабженные системой из трех взаимно перпендикулярных масштабно-координатных сеток; вверху – вид спереди (линейка дает представление о реальных размерах), внизу – вид сверху.


Шаг линий масштабно-координатных сеток составил 5 мм, при необходимости более точных измерений дополнительно использовалась металлическая линейка либо профильная (миллиметровая) чертежная бумага.

Проксимальный конец связки головки бедренной кости, ligamentum capitis femoris, человека в норме прикрепляется в нижней части ямки вертлужной впадины, fossa acetabuli. В одноопорной ортостатической позе при наклоне таза, pelvis, вниз в медиальную сторону с одновременным приведением бедра, os femur, связка головки бедренной кости, ligamentum capitis femoris, неизбежно натягивается. В результате к проксимальному концу связки головки бедренной кости, ligamentum capitis femoris, оказывается приложена сила, величина которой зависит от массы тела (без учета опорной ноги) и усилия приводящей группы мышц тазобедренного сустава, articulatio coxae.

В ранее поставленных экспериментах на муляже таза и бедра, os femur, мы наблюдали, что при воспроизведении одноопорной ортостатической позы аналог связки головки бедренной кости стремился принять вертикальное положение. В экспериментах на трехмерной механической модели тазобедренного человека нами выявлен эффект автостабилизации, который мы трактовали как явление взаимодействия сферических поверхностей шарнира модели и натянутого аналога связки головки бедренной кости. Однако в связи с особенностями конструкции трехмерной механической модели тазобедренного человека непосредственно видеть положение аналога связки головки бедренной кости было невозможно.

Чтобы получить общее представление о примерной ориентации натянутой связки головки бедренной кости, ligamentum capitis femoris, в одноопорной ортостатической позе, нами поставлен наглядный эксперимент на вышеописанной комбинированной механической модели тазобедренного сустава человека. К проксимальному концу аналога связки головки бедренной кости прикреплялась нагрузка – два магнита общей массой приблизительно 15 г (Рис. 12).


Рис. 12. Бедренная часть комбинированной механической модели тазобедренного сустава человека, к проксимальному концу аналога связки головки бедренной кости прикреплен груз массой 15 г; вверху – вид спереди, внизу – вид сверху (дистальный конец аналога связки головки бедренной кости закреплен в верхнем отверстии сферической головки модели).
 

Под действием нагрузки дистальный конец аналога связки головки бедренной кости огибал сферическую головку модели, а проксимальный конец аналога связки головки бедренной кости стремился принять вертикальное положение. В результате аналог связки головки бедренной кости приближался к медиальной поверхности сферической головке модели (Рис. 13).


Рис. 13. Сферическая головка бедренной части комбинированной механической модели тазобедренного сустава человека, к проксимальному концу аналога связки головки бедренной кости прикреплена нагрузка массой 15 г; вверху – вид спереди, внизу – вид сверху (дистальный конец аналога связки головки бедренной кости закреплен в верхнем отверстии сферической головки модели).


Соответственно, при натяжении связки головки бедренной кости, ligamentum capitis femoris, во врем наклона таза, pelvis, вниз в медиальную сторону с одновременным приведением бедра, os femur, следует ожидать, что дистальный конец связки головки бедренной кости, ligamentum capitis femoris, может соприкасаться с головкой бедренной кости, capitis femoris. В теории это должно приводить к истиранию связки головки бедренной кости, ligamentum capitis femoris, при движениях в тазобедренном суставе, articulatio coxae, что повышает риск ее повреждения. Нашими клиническими исследованиями установлено, что именно в области дистального конца чаще всего происходит разрыв связки головки бедренной кости, ligamentum capitis femoris (Архипов С.В., 2013).

Логично предположить, что на головке бедренной кости, caput femoris, давление связки головки бедренной кости, ligamentum capitis femoris, может оставить свой след. Действительно, в литературе мы находим указания на наличие на поверхности хрящевой головки бедренной кости, caput femoris, некоторых детей продольного вдавления, в котором помещается связка головки бедренной кости, ligamentum capitis femoris (Лебедева З.А., 1948; Маркизов Ф.П., 1939). Его наличие, с нашей точки зрения, есть зримое свидетельство натяжения связка головки бедренной кости, ligamentum capitis femoris, при отдельных движениях. Действительно, если бы связка головки бедренной кости, ligamentum capitis femoris, всегда оставалась расслаблена и пассивно огибала головку бедренной кости, caput femoris, маловероятно, что на ее поверхности остался какой-либо след. В экспериментах на трехмерной механической модели тазобедренного сустава нами установлено, что натяжение связки головки бедренной кости, ligamentum capitis femoris, может возникать при приведении бедра, os femur, и наклоне таза, pelvis, вниз в медиальную сторону и при супинации, сочетающейся со сгибанием. Подмечено, что в этом случае возможно давление на головку бедренной кости, caput femoris, связки головки бедренной кости, ligamentum capitis femoris, в области дистального ее крепления. Это воздействие, с нашей точки зрения, формирует в отдельных случаях продольное углубление на поверхности хрящевой головки бедренной кости, caput femoris.

Для уменьшения вероятности истирания связки головки бедренной кости, ligamentum capitis femoris, важно, чтобы ее продольная ось имела отклонение во фронтальной плоскости и максимально возможную глубину ямки вертлужной впадины, fossa acetabuli. При натяжении связки головки бедренной кости, ligamentum capitis femoris, за счет приведения бедра, os femur, и наклона таза, pelvis, вниз в медиальную сторону, рационально расположение ямки головки бедренной кости, fovea capitis femoris, а значит, дистального конца связки головки бедренной кости, ligamentum capitis femoris, в середине либо в нижнем секторе медиальной поверхности головки бедренной кости, caput femoris. Подобное расположение ямки головки бедренной кости, fovea capitis femoris, прослеживается на рентгенограммах неизмененного тазобедренного сустава, articulatio coxae (Рис. 14).

Рис. 14. Рентгенограмма левого тазобедренного сустава, articulatio coxae; пунктирной линией обозначена продольная ось шейки бедренной кости, collum femoris, виртуально разделяющая верхний и нижний сектор головки бедренной кости, caput femoris; в нижнем секторе стрелкой указано расположение ямки головки бедренной костиfovea capitis femoris, которая является областью крепления дистального конца связки головки бедренной кости, ligamentum capitis femoris, и обращена в сторону ямки вертлужной впадины, fossa acetabuli.


Данная локализация прикрепления дистального конца связки головки бедренной кости, ligamentum capitis femoris, мы воспроизводили, закрепляя аналог связки головки бедренной кости в нижнем отверстии сферической головки модели (Рис. 15).



Рис. 15 Основание и бедренная часть комбинированной механической модели тазобедренного сустава человека с прикрепленным к проксимальному концу аналога связки головки бедренной кости грузом 15 г; вверху – вид спереди, в центре – вид с медиальной стороны, внизу – вид сверху (дистальный конец аналога связки головки бедренной кости закреплен в нижнем отверстии сферической головки модели).

При закреплении в нижнем отверстии сферической головки модели дистального конца аналога связки головки бедренной кости последний принимал заметно более отвесное положение под действием прикрепленной нагрузки (Рис. 16). 

Рис. 16. Бедренная часть комбинированной механической модели тазобедренного сустава человека с прикрепленным к проксимальному концу аналога связки головки бедренной кости грузом 15 г; вверху – вид спереди, в центре – вид сверху, внизу – вид с медиальной стороны (дистальный конец аналога связки головки бедренной кости закреплен в нижнем отверстии сферической головки модели).


При отклонении во фронтальной плоскости аналога связки головки бедренной кости с прикрепленной нагрузкой он стремился вновь принять отвесное положение и приближался к сферической головке модели. Означенный опыт воспроизводил изменение положения связки головки бедренной кости, ligamentum capitis femoris, при реализации выявленного нами эффекта автолатерализации в тазобедренном суставе, articulatio coxae.

После отклонения аналога связки головки бедренной кости с прикрепленной к нему нагрузкой в сагиттальной плоскости он начинал колебаться подобно маятнику (Рис. 17).

Рис. 17. Кадры видеозаписи колебаний в сагиттальной плоскости аналога связки головки бедренной кости с прикрепленной к нему нагрузкой массой 15 г; наблюдаются колебательные движения с постепенным уменьшением амплитуды (вид с медиальной стороны).


Колебательные движения, которые совершал аналог связки головки бедренной кости в сагиттальной плоскости, постепенно затухали. В итоге он принимал отвесное положение. Подобные движения совершает связка головки бедренной кости, ligamentum capitis femoris, при ходьбе. Из мы косвенно наблюдали при экспериментальном воспроизведении эффекта авторотации на трехмерноймеханической модели тазобедренного сустава. Однако в означенных опытах колебательные движения быстро затухали в связи с относительно большой массой тазовой части модели и наличия трения в шарнире. Сымитированные на комбинированной механической модели тазобедренного сустава человека движения аналога связки головки бедренной кости в сагиттальной плоскости напоминали колебательные движения математического маятника с верхней точкой подвеса (Рис. 18).

Рис. 18. Кадры видеозаписи колебаний в сагиттальной плоскости аналога связки головки бедренной кости с прикрепленной к нему нагрузкой массой 15 г; наблюдаются колебательные движения с постепенным уменьшением амплитуды (вид спереди).
 

В начале движения груз имел наибольшую высоту над плоскостью опоры и наименьшую в положении покоя, когда колебания окончательно затухали. Мы полагаем, это является причиной реализации эффекта автостабилизации, который описали при изучении спонтанных движений тазовой части трехмерной механической модели тазобедренного сустава.

Означенные перемещения связки головки бедренной кости, ligamentum capitis femoris, сложно визуализировать в реальном тазобедренном суставе, articulatio coxae. Они могут быть зафиксированы при специальном магнитно-резонансном исследовании. На трехмерной механической модели тазобедренного сустава маятникообразные движения аналога связки головки бедренной кости нам непосредственно проследить не удалось.

Колебания аналога связки головки бедренной кости с прикрепленной нагрузкой, ставшие зримыми на комбинированной механической модели тазобедренного сустава, позволяют получить представление о перемещении связки головки бедренной кости, ligamentum capitis femoris, при ходьбе. Учитывая то, что проксимальная область крепления связки головки бедренной кости, ligamentum capitis femoris, при движениях таза, pelvis, движется по дуге, перемещении связки головки бедренной кости, ligamentum capitis femoris, скорее похожи на движения трехмерного маятника. Данные выводы можно сделать, в том числе, опираясь на эксперименты на трехмерной модели головки бедренной кости, описанные ранее. 

Смотри также:

Конструкция трехмерной механической модели тазобедренного сустава

                                                                     

Критика

Главным недочетом описанных ранее конструкций, по нашему мнению, являлась недостаточная упругость аналогов связок. В описанной конструкции мы использовали гибкий элемент - аналог LCF, выполненный из металла и усоврешенствовали способ его крепления. В норме LCF присоединяется к вертлужной впадине в нескольких точках, что нам воспроизвести не удалось. Кроме этого, основой бедренной части модели явился субтотальный эндопротез тазобедренного сустава. Мы согласны с тем, что данное медицинское изделие лишь отчасти воспроизводит проксимальный отдел нативной бедренной кости. 

Примечания

Экспериментальные исследования на обсуждаемой модели начались в 2009 году. Полная сборка конструкции описана в заявка на изобретение RU2009124926A. Впервые полную версию представленного выше экспериментального материала мы опубликовали в тринадцатой главе третьего тома монографии с юмором названой «Биомеханика пингвинов» (2018) [academia.edu]. Данная работа написана для личного использования и узкого круга лиц. В книге собраны, систематизированы и проанализированы результаты 25-ти лет изучения ligamentum capitis femoris и смежных тем. 
Расшифровку цитированных источников смотри в Списке литературы.

Первоисточник

Архипов СВ. Биомеханика пингвинов: заметки к вопросу о причинах ковыляющей походки и перспективах ее ремоделирования во имя обретения грациозности, сочиненные врачом, к.м.н. Сергеем Васильевичем Архиповым, в бытность им с 1992-го по 2017-й год хирургом и травматологом-ортопедом, по вдохновению в 1991-ом году его сестрою Еленой Васильевной, со светлой любовью к ней и благодарностью! Манускрипт в 5 томах. Т. 3. Главы 12-16. Напечатано Автором во граде Королев при попечении его супруги Людмилы Николаевны, ММXVIII A.D. [2018], bonum factum! [на благо и счастье], 518 с. [academia.edu]

Ключевые слова

ligamentum capitis femorisligamentum teres, связка головки бедра, функция, эксперимент, механическая модель 

 СОДЕРЖАНИЕ РЕСУРСА

Эксперименты и наблюдения

1991-2021АрхиповСВ

Комментарии

Популярные статьи

Эксперименты на рычажной модели

  Эксперименты на рычажной модели тазобедренного сустава Согласно современным представлениям, тазобедренный сустав , articulatio coxae , в одноопорной ортостатической позе функционирует как аналог рычага первого рода, что зачастую для наглядности иллюстрируется изображением рычажных весов ( Pauwels F ., 1973). С целью дальнейшего изучения биомеханики нижней конечности мы изготовили упрощенную рычажную модель тазобедренного сустава (Рис. 1).   Рис. 1. Рычажная модель тазобедренного сустава (вид с поворотом в 3/4); обозначения: 1 – основание, 2 – грузовая мачта, 3 – кронштейн грузовой мачты, 4 – рычаг, 5 – нагрузка, 6 – динамометр, 7 – серьга динамометра. Рычажная модель тазобедренного сустава выполнена из металлических планок. Она имела горизонтальное основание. К нему прикреплялась грузовая мачта, в верхней точке которой имелся кронштейн. К средней части грузовой мачты присоединялся на горизонтальной оси рычаг, который имел возможность свободного вращения во фронтальной плоскости.

927-942Arabic Bible

  Фрагмент книги Берешит (Вначале) в переводе на арабский, который произвел Саадия Гаон (927-942). В тексте на арабском языке содержатся упоминания о ligamentum capitis femoris ( LCF ) животного и человека. Краткий комментарий смотри ниже. Перевод на английский доступен по ссылке: 927-942Arabic Bible . Цитата. [ a ra] التكوين 32:32 ( источник : 1653WaltonB, p. 145) Современные редакции: لذلك لا يأكل بنو اسرائيل عرق النّسا الذي على حقّ الفخذ الى هذا اليوم . لانه ضرب حقّ فخذ يعقوب على عرق النّسا ( источник : arabicbible.com ) لِذَلِكَ لا يَاكُلُ بَنُو اسْرَائِيلَ عِرْقَ النَّسَا الَّذِي عَلَى حُقِّ الْفَخِْذِ الَى هَذَا الْيَوْمِ لانَّهُ ضَرَبَ حُقَّ فَخْذِ يَعْقُوبَ عَلَى عِرْقِ النَّسَا (источник: copticchurch . net ) Перевод [ Rus ] Бытие 32:32 Точное переложение на русский язык в настоящее время недоступно нашему проекту. Выявлен перевод ключевого термина, обозначающего LCF : النّسا   ~ седалищный ( подробнее см. комментарий). Sa ʻ adia   ben   Joseph .  Pentateuch . 1600 , с

Новости в сети интернет (2004 год)

  Новости в сети интернет Архипов-Балтийский С.В. Содержание 1. Переворот в механике тазобедренного сустава 2. Обозначено новое научное направление 3. Установлена неизвестная ранее закономерность 4. Уточнение ключевых определений биологии 5. Новая трактовка значения сна 6. Уточнена функция связки головки бедра   1. Переворот в механике тазобедренного сустава Установлено, что в ортостатическом положении с опорой на одну ногу, а также в середине одноопорного периода шага, тазобедренный сустав функционирует как рычаг второго рода. Это обеспечивается за счет натяжения связки головки бедра, ограничивающей приведение бедра и наклон таза в неопорную сторону. Благодаря связке головки бедра происходит замыкание тазобедренного сустава во фронтальной плоскости. При этом основная нагрузка приходится на нижние сектора головки бедренной кости и вертлужной впадины. До сих пор считалось, что в одноопорном ортостатическом положении тазобедренный сустав функционирует как рычаг первого рода. Таз удержива

922-722bcElohist

  Фрагмент книги Берешит (Бытие) утраченного библейского источника Элохист, начертанного палеоеврейским письмом. Вариант древнейшего описания повреждения ligamentum capitis femoris ( LCF ) и причины хромоты возрастом 922-722 гг. до совр. эры. Краткий комментарий смотри ниже. Перевод на английский доступен по ссылке: 922-722 bcElohist . Цитата . [ Paleo-Hebrew ] Elohist . Bereshit 32:32-33 (источник: 5784 Moshe   Ben   Amram , стр. 41; правка наша ) Перевод [ Rus ] Элохист. Берешит 32:32-33 И засияло ему солнце, когда он проходил Пынуэйл; а он хромал на бедро свое. Поэтому не едят сыны Исраэйлевы сухой жилы, которая из сустава бедра, до нынешнего дня , потому что коснулся тот сустава бедра Яакова в жилу сухую. (наша правка-реконструкция версии 1978БроерМ_ЙосифонД, Берешит 32:32-33; сохранен текст 922-722 гг. до совр. эры, принадлежащий утраченному библейскому источнику «Элохист») Moshe Ben Amram. Pentateuch in Paleo-Hebrew, 5784. Внешние ссылки Moshe Ben Amram. Pentateuch in Pal

Моделирование одноопорной ортостатической позы при коксартрозе с горизонтальным положением таза

    Моделирование одноопорной ортостатической позы при коксартрозе с горизонтальным положением таза [1] . Введение [2] . Моделирование одноопорной ортостатической позы при коксартрозе без наклона таза в сагиттальной плоскости [3] . Моделирование одноопорной ортостатической позы при коксартрозе с наклоном таза вперед [4] . Моделирование одноопорной ортостатической позы при коксартрозе с наклоном таза назад   [1] . Введение В настоящей серии экспериментальных исследований предпринято изучение взаимодействия связок и мышц тазобедренного сустава, articulatio coxae , при коксартрозе в одноопорной ортостатической позе с горизонтальным положением таза, pelvis . Для постановки опытов нами использована модифицированная модель тазобедренного сустава , которая содержала бедренную часть и объемную тазовую часть с прикрепленной к ней нагрузкой 1 кг. Последняя моделировала действие веса тела и присоединялась к крайнему отверстию грузового кронштейна, находящемуся на уров

Моделирование начала двухопорного периода шага при коксартрозе

  Моделирование начала двухопорного периода шага при коксартрозе [1] . Введение [2] . Моделирование начала второго двухопорного периода шага при коксартрозе [1] . Введение В настоящей серии экспериментов предпринято изучение взаимодействия связок и мышц тазобедренного сустава, articulatio coxae , в начале двухопорного периода шага при коксартрозе. Для постановки опытов нами использована  модифицированная механическая модель.  Конструкция содержала бедренную часть и объемную тазовую часть с прикрепленной к ней нагрузкой 1 кг. Последняя моделировала действие веса тела и присоединялась к крайнему отверстию грузового кронштейна, находящемуся на уровне изображения межпозвонкового диска L 5- S 1 позади плоскости объемной тазовой части. Точка расположения груза воспроизводила общий центр масс тела, локализующийся медиальнее, выше и позади от тазобедренного сустава, articulatio coxae .   Модель воспроизводила функцию трех основных групп мышц тазобедренного сустава, articul

8cent.bcHomer.

  Фрагмент поэмы Гомера Илиада ( Ὅμηρος . Ἰλιάς , ок. 8 в. до совр. эры). Поэт описывает открытый переломо-вывих бедра, который обычно сопровождается повреждением ligamentum capitis femoris ( LCF ). Наш краткий комментарий смотри ниже. Перевод на английский доступен по  ссылке: 8cent.bcHomer .  Цитируемый нами отрывок упоминается в трудах иных авторов: 177-180bGalen , 976-1115TheophilusProtospatharius , 1603IngrassiaeIP , 1724FabriciusJA , 1842GreenhillGA , 2020АрхиповСВ_ПролыгинаИВ . Цитата. [Grc] Ἰλιάς . E . 302-310. (источник: 1 8 9 0Homer ,  p .  9 1) Перевод Илиада. Песнь пятая. Подвиги Диомеда. 302-310. С криком ужасным. Но камень рукой захватил сын Тидеев, Страшную тягость , какой бы не подняли два человека Ныне живущих людей , — но размахивал им и один он; Камнем Энея таким поразил по бедру, где крутая Лядвея ходит в бедре по составу, зовомому чашкой: Чашку удар раздробил, разорвал и беде́рные жилы, Сорвал и кожу камень жестокий. Герой пораженный Пал на колено вперед; и, кол

5-6cent.Georgian Bible

  Фрагмент книги Рождение (Бытие) грузинской Библии ( 5-6 в. ). В тексте на старогрузинском языке содержатся упоминания о ligamentum capitis femoris ( LCF ) животного и человека. Краткий комментарий смотри ниже. Перевод на английский доступен по ссылке: 5-6cent.Georgian Bible . Цитата. [ Geo ( asomtavruli ) ] Ⴜიგნი პირველი Ⴃაბადებისაჲ 32:32 ამისთჳს არა ჭამიან ძეთა ისრაჱლისათა ძარღჳ იგი , რომელ დაუბუშა , რომელი არს ვრცელსა ბარკლისასა , ვიდრე დღენდელად დღედმდე , რამეთუ შეახო ვრცელსა ბარკლისა იაკობისსა , რომელ დაუბუშა . (источник: titus . fkidg 1. uni - frankfurt . de ) (источник: 1 989 წიგნნი   ძუელისა   აღთქუმისანი  [Акакий Шанидзе] , стр. 199-200) Перевод [ Rus ] Рождение 32:32 Переложение на русский язык в настоящее время недоступно нашему проекту. Выявлен перевод ключевого термина: ძარღჳ = ძარღვი = жила (1901ЧубиновДИ; подробнее см. комментарий). Внешние ссылки წიგნნი ძუელისა აღთქუმისანი 978 წლის ხელნაწერის მიხედვით: ტომი 1, ნაკვეთი 1: დაბადებისაჲ. გამოსლვათ

Моделирование асимметричной двухопорной ортостатической позы

  Моделирование асимметричной двухопорной ортостатической позы Различают два основных типа вертикальной позы с опорой на две нижние конечности: симметричная двухопорная ортостатическая поза и асимметричная двухопорная ортостатическая поза (Рис. 1). Рис. 1. Основные типы двухопорной ортостатической позы; слева – симметричная двухопорная ортостатическая поза, справа – асимметричная двухопорная ортостатическая поза. Симметричная двухопорная ортостатическая поза характеризуется горизонтальным положением таза,   pelvis , и равномерной нагрузкой на обе выпрямленные в коленных суставах,   articulatio   genum , нижние конечности. В асимметричной двухопорной ортостатической позе (асимметричный тип стояния или стойка «вольно»), одна из ног выпрямлена, а другая согнута в коленном суставе,   articulatio   genum , и тазобедренном суставе,   articulatio   coxae . При этом таз,   pelvis , располагается под углом к горизонту (Недригайлова О.В., 1967; Иваницкий М.Ф., 1985). Означенные типы вертикальной