К основному контенту

НОВЫЕ ПУБЛИКАЦИИ

  Н ОВЫЕ ПУБЛИКАЦИИ РЕСУРСА      05 .08.2025 Архипов СВ.  LCF при остеоартрите тазобедренного сустава. Обзор , 2025. 03 .08.2025 Архипов СВ.  LCF при врожденном вывихе бедра. Обзор , 2025. 02 .08.2025 1802CamperP. Автор об суждает отсутствие и неизвестную роль LCF  у слона и некоторых обезьян.  Архипов СВ. LCF при артрогрипозе. Обзор ,  2025.  Архипов СВ. LCF при асептическом некрозе. Обзор ,  2025.   01 .08.2025 Публикации о LCF в 2025 году (Июль)   Статьи и книги с упоминанием LCF опубликованные в июле 2025 года.  1803CamperP. Автор обсуждает отсутствие и неизвестную роль LCF  у орангутанга, слона, ленивца.  1888 BuissonGPE . Диссертация, посв ященная изучению функции LCF .  1824 MeckelJF . Автор отмечает отсутствие LCF  у орангутангов, трёхпалых ленивцев и черепах.  1898 LeiseringAGT.   Автор описывает LCF  у лошади и добавочную связку . 31 .07.2025 Инте рнет-журнал "О КР...

Ligamentum incognitum. О значении связки головки бедра для ходьбы


8.8 О значении связки головки бедра для ходьбы

Выше была продемонстрирована и, как нам думается, доказана, важная роль СГБ для обеспечения стабильности ортостатического положения. Ее роль значительна и в организации движений всего тела при ходьбе. Непосредственно влияя на положение таза и бедра, СГБ опосредованно участвует в определении направления движений во всех крупных суставах опорной нижней конечности, а также позвоночника, плечевого пояса и даже рук. Думается, что именно СГБ является одной из главных функциональных связей ТБС, и всей ОДС, придающей автоматизм и ритмичность ходьбе (Архипов С.В., 1997).

Вместе с тем СГБ участвует в распределении нагрузки на элементы ТБС, определяет направление потоков внутренних сил и регулирует напряжение в них. Кроме этого, СГБ позволяет не только существенно снизить действующие напряжения в элементах ТБС и сочленяющихся в нем костей, но также уменьшает энергозатраты на цикл ходьбы. Связано это с тем, что в одноопорном периоде шага, благодаря СГБ большая часть мышц «отдыхают», находясь в расслабленном состоянии.

Как явствует из графика движений таза во фронтальной плоскости (Рис.71), время, в течение, которого задействована СГБ составляет порядка 1/4 продолжительности двойного шага. Соответственно нижние сектора ГБК и полулунной поверхности ВВ оказываются нагруженными в течение 25% времени двойного шага. Истинный одноопорный период шага наблюдается только тогда, когда противоположная нога не соприкасается с поверхностью опоры, то есть является переносной. Длительность переноса конечности в среднем 33% от общего времени двойного шага (Шуляк И.П., 1980). В одноопорном периоде верхние сектора ГБК и полулунной поверхности ВВ оказываются нагруженными в течение приблизительно 8% времени двойного шага, в момент перехода из двухопорного ортостатического положения и обратно. Именно в течение этого времени ТБС можно рассматривать как рычаг первого рода и, соответственно, пользоваться схемой, которую предложил F.Pauwels. Все остальное время одноопорного периода - 25%, ТБС функционирует как рычаг второго рода!

В двухопорном периоде нагрузка на ТБС распределяется приблизительно равномерно и приходится на верхние сектора ГБК и полулунной поверхности ВВ. Длительность опоры на одну ногу, по данным, которые приводит И.П.Шуляк (1980), составляет в среднем 67% периода двойного шага. Соответственно для каждой из нижних конечностей, двухопорный период составляет около 33% от времени двойного шага. В течение этого времени на верхние сектора ГБК и полулунной поверхности ВВ действует сила равная, в среднем, половине веса тела. С учетом интервала времени одноопорного периода верхние сектора ГБК и полулунной поверхности ВВ оказываются нагруженными в течение 42% времени периода двойного шага. 

Рис.71. Угловые движения таза (сплошные линии) и верхнегрудного отдела позвоночника (пунктирные) при ходьбе (а фронтальная плоскость, б) сагиттальная плоскость, в) горизонтальная плоскость, г) подограмма. По оси абсцисс – время, в % к длительности двойного шага, по оси ординат – амплитуда в градусах (см. Беленький В.Е., Куропаткин Г.В., 1994). 

Как известно максимальная опорная реакция ног наблюдается в момент переднего и заднего толчков и составляет 110-120% от веса тела (Беленький В.Е., Куропаткин Г.В., 1994). В эти же моменты максимальна величина веса тела, действующая на нижние конечности. В фазу заднего толчка вся нагрузка приходится только на одну ногу, в частности на верхние сектора ГБК и полулунной поверхности ВВ. Данная энергия гасится отводящими мышцами, работающими в уступающем режиме. В момент переднего толчка нагрузка распределяется между двумя нижними конечностями, их верхними секторами ГБК и полулунных поверхностей ВВ. Соответственно наибольшая нагрузка, приходящаяся на элементы ТБС впереди расположенной ноги, наблюдается в фазу заднего толчка.

В середине опоры на одну конечность вертикальная составляющая действующего веса тела минимальна и значительно ниже статического веса тела (Бернштейн Н.А., 1966). Одним из объяснений этому, феномену может быть действие СГБ. В одноопорный период, таз оказывается как бы подвешенным на СГБ и совершает колебательное движение вперед по дуге с радиусом равным длине СГБ. Иными словами, таз представляет собой маятник с верхней точкой подвеса. ОЦМ получает центростремительное ускорение, которое в нижней точке траектории оказывается направленным вертикально вверх. Возникающая при этом сила противоположна силе тяжести, что уменьшает вес тела, опирающегося на ногу. В этот период основная нагрузка приходится на нижние сектора ГБК и полулунной поверхности ВВ. Это значит, нагрузка на них существенно уменьшается.

Простейшие расчеты, с учетом действия СГБ, показывают, что результирующая нагрузка на элементы ТБС значительно меньше, чем, та, что можно было бы ожидать при расчетах с использованием схемы F.Pauwels (1965, 1980) для одноопорного положения. Согласно ей при массе тела 58.7 кг, в одноопорном ортостатическом положении нагрузка на ТБС составляет 175 кг, а при ходьбе возрастает до 258 кг (Соков Л.П., Романов М.Ф., 1991). Другими словами, в покое она превышает вес тела почти в три раза (2.981 раза), а при ходьбе более чем в четыре раза (4.395 раза)! Близкие усредненные литературные данные приводит Х.А.Янсон (1975), при ходьбе в одноопорном периоде на ТБС действует нагрузка равная удвоенному весу тела без веса опорной конечности, а при быстрой ходьбе она возрастает до 4.3 веса тела. Согласно же М.Доэрти, Д.Доэрти (1993) при ходьбе на ТБС действует нагрузка равная от 1.5 до 6 веса тела.

Относительный вес нижней конечности составляет 18.1% от массы всего тела (Морейнис И.Ш., 1988). Следовательно, в одноопорном периоде шага сила реакции СГБ уравновешивает 81.9% веса тела, что составляет 57.33 кг при массе всего тела 70 кг. Плечо силы реакции СГБ приблизительно в три раза меньше плеча веса тела. Тогда, для сохранения равновесия тела, сила реакции СГБ должна быть также в три раза больше веса тела. Результирующая же нагрузка на ГБК равна удвоенному весу, которое тело имеет в этот момент. По нашим данным у человека, масса которого составляет 70 кг, в одноопорном ортостатическом положении нагрузка на нижний сектор ГБК равна 114,66 кг. Вычисляемое значение на 60,34 кг меньше того, что получил F.Pauwels (1965, 1980) для аналогичного положения. С нашей точки зрения, полученные F.Pauwels (1965, 1980) значительные нагрузки, действуют на ТБС кратковременно и только в момент перехода от одноопорного к двухопорному ортостатическому положению и обратно, в том числе и при ходьбе.

По данным Н.А.Бернштейна (1966), при массе тела 70 кг, в середине одноопорного периода его вес снижается приблизительно до 40 кг. Это составляет 57.14% от статического веса тела. С учетом означенного, нагрузка на нижние сектора ГБК и ВВ еще меньше, чем та, что мы рассчитали для одноопорного ортостатического положения и равна только 80 кг. Как видно на ГБК в середине одноопорного периода шага воздействует вес всего на 10 кг превышающий покоящееся тело.

Следует отметить также то, что чем выше скорость ходьбы, и больше центростремительное ускорение ОЦМ, направленное вверх в одноопорном периоде, тем меньший вес имеет тело. Значит и нагрузка на нижний сектор ГБК, в одноопорном периоде, будет уменьшаться. Схема F.Pauwels применима к ТБС, но только тогда, когда начинается или завершается одноопорный период. При этом основная нагрузка действительно приходится на верхние сектора ГБК и полулунной поверхности ВВ. Однако эта высокая нагрузка действует непродолжительное время, как уже отмечалось, период равный 8% от времени двойного шага.

В свете иных представлений о механике ТБС необходим пересмотр патогенеза ряда его заболеваний - коксартроза, асептического некроза ГБК, болезни Пертеса, дисплазии, врожденного вывиха бедра, эпифизеолиза ГБК и некоторых других. Общепринятая механика ТБС это механика ТБС без СГБ, в том числе механика современных эндопротезов данного ТБС без аналога СГБ. Известные расчеты усилий и нагрузок следует применять только к патологическим состояниям ТБС и подобным эндопротезам. С нашей точки зрения, уточнение роли СГБ, позволяет говорить поистине, о перевороте в механике ТБС. Суммируя сказанное можно утверждать, что СГБ при ходьбе:

- разгружает верхние сектора ГБК и полулунной поверхности,

- уменьшает энергозатраты при ходьбе,

- уменьшает действующие напряжения в элементах ТБС,

- автоматизирует акт ходьбы,

- обеспечивает поступательное перемещение ОЦМ вперед.

- участвует в поддержании вертикального положения тела.


                                                                     

Автор:

Архипов С.В. – С.В. Архипов-Балтийский является псевдонимом, который использовался до начала 2006 года с целью более точной дифференцировки на научном поле. 

Цитирование:

Архипов-Балтийский СВ. Ligamentum capitis femoris - ligamentum incognita. Калининград, 2004. [primo.nlr.ru , aleph.rsl.ru]

Ключевые слова

ligamentum capitis femorisligamentum teres, связка головки бедра, свойства, анатомия, эксперимент, гистология, синонимы

СОДЕРЖАНИЕ РЕСУРСА

Морфология и свойства

Популярные статьи

СОДЕРЖАНИЕ РЕСУРСА

  LCF –  ключ к грациозной походке, выяснению причин болезней тазобедренного сустава и опровержению мифов о них. Мы представляем перспективное научное знание, необходимое для сбережения здоровья, разработки  имплантов и  новых способов лечения дегенеративно-дистрофических заболеваний тазобедренного сустава. Цель проекта: содействие сохранению нормальной походки и качества жизни, помощь в изучении механики  тазобедренного сустава, разработке эффективных способов лечения его болезней и травм.   СОДЕРЖАНИЕ  РЕСУРСА  БИБЛЕЙСКАЯ ТРАВМА (Художники и скульпторы о повреждении  LCF,   описанном в Библии: картины, скульптуры, иконы…) 1000Jacob&Archangel.  Фреска. Изображение обстоятельств и механизма травмы LCF. 17c.PatelP.  Картина. Изображение обстоятельств и механизма травмы LCF. 17c.OvensJ.  Картина. Изображение обстоятельств и механизма травмы LCF. 1639BreenberghB.  Картина. Изображение о...

ИСТОРИЯ ИЗУЧЕНИЯ ФУНКЦИЙ LCF

  История изучения функций LCF (Каталог обзоров по истории изучения основных функций ligamentum capitis femoris) Детализация функций LCF Функция ограничения движений, присущая LCF. Обзор    Перемешивающая функция LCF. Обзор Опорная функция LCF . Обзор Стабилизирующая функция  LCF . Обзор Чувствительная функция  LCF . Обзор Функция регу лировки внутрисуставного давления, присущая LCF. Обзор   Продуцирующая функция LCF. Обзор Защитная функция LCF. Обзор Функция корректировки движений LCF. Обзор Функция ритмовводителя, присущая LCF. Обзор Функция распределения нагрузки  LCF . Обзор Функция преобразования рычага, присущая  LCF. Обзор Обтурационная функция  LCF.  Обзор Силовая функция LCF. Обзор Эффекты функций  LCF. Обзор Функция преобразования энергии, присущая LCF. Обзор Функция обеспечения конгруэнтности, присущая LCF. Обзор Распределительная функция LCF. Обзор Демпфирующая функция LCF. Обзор Соединительная функция  LCF . О...

Общая классификация патологии LCF

Общая классификация патологии LCF Версия: 20240420 Аннотация Анализ литературных данных и собственные морфологические наблюдения позволили предложить Общую классификацию патологии ligamentum capitis femoris . Введение В России первые попытки классификации патологии связки головки бедренной кости, ligamentum capitis femoris (LCF) были предприняты морфологами. Л.И. Гаевская (1954) различала три типа LCF: : 1) длинные толстые (длина 41–51 мм, толщина 5 мм), 2) короткие тонкие (длина 10–20 мм, толщина 1 мм), 3) длинные небольшой толщины (длиной 43–45 мм, при толщине 3 мм и длинной 28–30 при толщине 4–5 мм). В.В. Кованов, А.А. Травин (1963) выделил три разновидности гистологического строения LCF: 1) с преобладанием рыхлой соединительной ткани; 2) с преобладанием плотной соединительной ткани; 3) с равномерным распределением рыхлой и плотной соединительной ткани. Развитие артроскопической хирургии позволило выявить различные, ранее неописанные виды патологии LCF , что побуд...

Функция регулировки внутрисуставного давления, присущая LCF. Обзор

  Функция регулировки внутрисуставного давления,  присущая  ligamentum capitis femoris.  Обзор Архипов С.В.     Содержание [i]   Резюме [ii]   Введение [iii]   17-й век [iv]   18-й век [v]   19-й век [vi]   20-й век [vii]   21-й век [viii]   Некоторые сомневающиеся [ix]   Отдельные противники [x]   Список литературы [xi]   Приложение [i]   Резюме Представлены мнения о наличии у ligamentum capitis femoris (LCF) функции регулирования давления в тазобедренном суставе. [ii]   Введение В конце 20-го века наш предметный анализ доступных источников информации, показал, что проблема роли LCF в опорно-двигательной системе не решена. Разногласия по столь важному вопросу подвигли заняться собственными научными изысканиями. Параллельно накапливались и анализировались мнения иных авторов. Этот процесс продолжается до сих пор. Здесь мы планируем собрать воедино все значимые цитаты и мысли, касающиеся функц...

Публикации о LCF в 2025 году (Июль)

     Публикации о  LCF   в 2025 году (Июль)   Tekcan, D., Bilgin, G., & Güven, Ş. Evaluation of Risk Factors for Developmental Dysplasia of the Hip.  HAYDARPAŞA NUMUNE MEDICAL JOURNAL ,   65 (2), 99-103.    [i]     jag.journalagent.com   Domb, B. G., & Sabetian, P. W. (2025). Greater Trochanteric Pain Syndrome: Gluteal Tendinopathy, Partial Tear, Complete Tear, Iliotibial Band Syndrome, and Bursitis. In  Orthopaedic Sports Medicine  (pp. 1-17). Springer, Cham.    [ii]    link.springer.com   Kuhns, B. D., Becker, N., Patel, D., Shah, P. P., & Domb, B. G. (2025). Significant Heterogeneity in Existing Literature Limits Both Indication and Outcome Comparability Between Studies Involving Periacetabular Osteotomy For Acetabular Dysplasia With or Without Arthroscopy Despite Improvement for Both: A Systematic Review.  Arthroscopy .   [iii]    arthroscopyjourna...