К основному контенту

Моделирование симметричной двухопорной ортостатической позы при отсутствии LCF

 

Моделирование симметричной двухопорной ортостатической позы при отсутствии LCF

Моделирование симметричной двухопорной ортостатической позы с наклоном таза вперед при отсутствии связки головки бедренной кости

Для настоящих экспериментов нами собрана электромеханическая модель тазобедренного сустава человека с объемной тазовой частьюкоторая имитировала тазобедренный сустав, articulatio coxae, без связки головки бедренной кости, ligamentum capitis femoris. Конструкция воссоздала функциональную и морфологическую ситуацию, свойственную для коксартроза, тазобедренного сустава, articulatio coxae, замещенного стандартным эндопротезом, а также полного повреждения связки головки бедренной кости, ligamentum capitis femoris. Модель содержала бедренную часть, объемную тазовую часть с нагрузкой, аналог средней ягодичной мышцы и аналог комплекса коротких мышц, вращающих бедро наружу, а также аналоги наружных связок: аналог седалищно-бедренной связки, аналог лобково-бедренной связки, аналог вертикальной и горизонтальной части подвздошно-бедренной связки. С целью моделирования действия веса тела к крайнему отверстию грузового кронштейна объемной тазовой части прикреплялась нагрузка массой 1 кг. В соответствующих случаях для стабилизации объемной тазовой части модели использован специальный подъемник, снабженный колесами.

Используя описанное устройство, мы смоделировали основные виды ортостатический поз человека при отсутствии связки головки бедренной кости, ligamentum capitis femoris. В экспериментах нами воспроизводились положения таза, pelvis, и бедра, os femur, отдельные из которых нами наблюдались у пациента, страдающего коксартрозом (Архипов С.В., 2013).

Изначально на динамической механической модели тазобедренного сустава человека нами воспроизведена симметричная двухопорная ортостатическая поза с наклоном таза, pelvis, вперед. Для стабилизации объемной тазовой части модели использован подъемник, снабженный колесами. Наконечник его вертикального стержня упирался снизу в опорный кронштейн объемной тазовой части модели и препятствовал ее отклонению во фронтальной и сагиттальной плоскости. Подъемник объемной тазовой части и бедренная часть модели воспроизводили опорные нижние конечности. Бедренная часть модели располагалась вертикально в сагиттальной плоскости с отклонением наружу во фронтальной плоскости на 10° и поворотом вокруг вертикальной оси вперед на 10°. Мы произвели удлинение аналога средней ягодичной мышцы и аналога комплекса коротких мышц, вращающих бедро наружу.

Высота подъемника отрегулирована так, что изображения крыльев подвздошных костей, ala ossis ilii, тазового элемента модели располагались приблизительно на одном уровне (Рис. 1).


Рис. 1. Моделирование симметричной двухопорной ортостатической позы на электромеханической модели тазобедренного сустава человека с нагруженной объемной тазовой частью, с аналогами мышц и наружных связок, но без аналога связки головки бедренной кости (наклон таза вперед); вверху – вид спереди, внизу – вид сзади.

В сагиттальной плоскости объемная тазовая часть модели стремилась отклониться назад. Для достижения устойчивого положения объемная тазовая часть нами наклонена вперед до угла 37°. В горизонтальной плоскости тазовый элемент объемной тазовой части модели располагался перпендикулярно переднезадней оси (Рис. 2).


Рис. 2. Моделирование симметричной двухопорной ортостатической позы на электромеханической модели тазобедренного сустава человека с нагруженной объемной тазовой частью, с аналогами мышц и наружных связок, но без аналога связки головки бедренной кости (наклон таза вперед); вверху – вид сверху, внизу – вид с латеральной стороны.

Длинная ось вертлужного элемента объемной тазовой части модели была отклонена вперед, вверх и в медиальную сторону. В шарнире модели присутствовало сгибание, супинация, среднее положение между приведением и отведением. Динамометры аналога комплекса коротких мышц, вращающих бедро наружу, и аналога средней ягодичной мышцы, не регистрировали усилия.

После стабилизации объемной тазовой части модели проанализировано соотношение в шарнире, ориентация аналогов связок и степень их натяжения. Отмечено натяжение аналога седалищно-бедренной связки и горизонтальной части аналога подвздошно-бедренной связки. Аналог лобково-бедренной связки и вертикальная часть аналога подвздошно-бедренной связки оказались не натянуты. Означенное визуально подтверждалось их плавными изгибами без прижатия к элементам бедренной части модели. Разобщения сферической головки шарнира и ответной сферической поверхности вертлужного элемента модели не наблюдалось (Рис. 3).

a

b

c

d
Рис. 3. Аналоги связок и динамометры электромеханической модели тазобедренного сустава человека с нагруженной 
объемной тазовой частью (моделирование симметричной двухопорной ортостатической позы с наклоном таза вперед при отсутствии аналога связки головки бедренной кости); a – вид спереди, b – вид сзади, c – вид с латеральной стороны, d – вид сверху; условные обозначения: liv - вертикальная часть аналога подвздошно-бедренной связки, ligamentum iliofemoralelih – горизонтальная часть аналога подвздошно-бедренной связки, ligamentum iliofemoraleli – аналог седалищно-бедренной связки, ligamentum ischiofemoralelp – аналог лобково-бедренной связки, ligamentum pubofemorale.


Как выше отмечено, по причине расположения общего центра масс позади от оси вращения объемная тазовая часть модели стремилась отклониться назад в сагиттальной плоскости. За счет наклона объемной тазовой части модели вперед в этом направлении смещался и общий центр масс системы. При этом его проекция оказывалась впереди от оси, соединяющей центр шарнира и точку опоры объемной тазовой части модели на подъемник. Одновременно натягивался аналог седалищно-бедренной связки и горизонтальная часть аналога подвздошно-бедренной связки. Указанному способствовал наклон бедренной части модели в латеральную сторону и ее поворот вперед вокруг вертикальной оси. Аналог седалищно-бедренной связки и горизонтальная часть аналога подвздошно-бедренной связки, будучи натянуты, стопорили шарнир модели в сагиттальной плоскости. Отклонению объемной тазовой части модели вниз в медиальную сторону и повороту в горизонтальной плоскости препятствовал подъемник. Подъемник объемной тазовой части имитировал вторую опорную конечность. Кроме подъемника, натянутого аналога седалищно-бедренной связки и горизонтальной части аналога подвздошно-бедренной связки, для поддержания объемной тазовой части модели в положении покоя не требовалось дополнительного внешнего усилия.

В норме при поддержании симметричной двухопорной ортостатической позы наблюдается разгибание в тазобедренных суставах, articulatio coxae. Сгибание, которое мы воспроизвели на модели, свойственно для поддержания симметричной двухопорной ортостатической позы при двухстороннем коксартрозе и врожденном вывихе бедра, os femur, при котором, как правило, всегда наблюдается патология связки головки бедренной кости, ligamentum capitis femoris. Избыточный наклон таза, pelvis, вперед в сагиттальной плоскости пациенты компенсируют гиперлордозом в поясничном отделе позвоночника.

Эксперимент продемонстрировал, что в симметричной двухопорной ортостатической позе при отсутствии в обоих тазобедренных суставах, articulatio coxae, связки головки бедренной кости, ligamentum capitis femoris, стабилизация таза, pelvis, достижима посредством натяжения седалищно-бедренной связки, ligamentum ischiofemorale, и горизонтальной части подвздошно-бедренной связки, ligamentum iliofemorale. При этом в поддержании равновесия тазобедренные мышцы могут не задействоваться, как и другие связки тазобедренных суставов, articulatio coxae.



Моделирование симметричной двухопорной ортостатической позы с наклоном таза назад при отсутствии связки головки бедренной кости

Затем на электромеханической модели тазобедренного сустава нами воспроизведена симметричная двухопорная ортостатическая поза с наклоном таза, pelvis, назад. Для стабилизации объемной тазовой части модели использован подъемник объемной тазовой части, снабженный колесами. Наконечник его вертикального стержня упирался снизу в опорный кронштейн объемной тазовой части модели и препятствовал ее отклонению во фронтальной и сагиттальной плоскости. Подъемник объемной тазовой части и бедренная часть модели воспроизводили две опорные нижние конечности. Бедренная часть модели располагалась вертикально в сагиттальной плоскости с отклонением наружу во фронтальной плоскости на 10° и поворотом вокруг вертикальной оси вперед на 10°. В данном опыте нами не изменялась длина аналога средней ягодичной мышцы и аналога комплекса коротких мышц, вращающих бедро наружу.

Высота подъемника отрегулирована так, что изображения крыльев подвздошных костей, ala ossis ilii, тазового элемента модели находились приблизительно на одном уровне (Рис. 4).


Рис. 4. Моделирование симметричной двухопорной ортостатической позы на электромеханической модели тазобедренного сустава человека с нагруженной объемной тазовой частью, с аналогами мышц и наружных связок, но без аналога связки головки бедренной кости (наклон таза назад); вверху – вид спереди, внизу – вид сзади.

В сагиттальной плоскости объемная тазовая часть модели под действием прикрепленной нагрузки отклонялась назад на угол 38° от вертикали. При этом тазовый элемент объемной тазовой части модели спонтанно поворачивался назад в горизонтальной плоскости на 6° вокруг центра шарнира бедренной части модели (Рис. 5).


Рис. 5. Моделирование симметричной двухопорной ортостатической позы на электромеханической модели тазобедренного сустава человека с нагруженной объемной тазовой частью, с аналогами мышц и наружных связок, но без аналога связки головки бедренной кости (наклон таза назад); вверху – вид сверху, внизу – вид с латеральной стороны.

Длинная ось вертлужного элемента объемной тазовой части модели была отклонена назад, вверх и в медиальную сторону. В шарнире модели присутствовало положение разгибания, супинация и среднее положение между приведением и отведением. Динамометры аналога комплекса коротких мышц, вращающих бедро наружу, и аналога средней ягодичной мышцы не регистрировали усилия.

После стабилизации объемной тазовой части модели проанализировано соотношение в шарнире, ориентация аналогов связок и степень их натяжения. Отмечено натяжение аналога лобково-бедренной связки и вертикальной части аналога подвздошно-бедренной связки. Аналог седалищно-бедренной связки и горизонтальная часть аналога подвздошно-бедренной связки оказались не натянуты. Означенное визуально подтверждалось их плавными изгибами без прижатия к элементам бедренной части модели. Разобщения сферической головки шарнира и ответной сферической поверхности вертлужного элемента модели не наблюдалось (Рис. 6).

a

b

c

d
Рис. 6. Аналоги связок и динамометры электромеханической модели тазобедренного сустава человека с нагруженной 
объемной тазовой частью (моделирование симметричной двухопорной ортостатической позы с наклоном таза назад при отсутствии аналога связки головки бедренной кости); a – вид спереди, b – вид сзади, c – вид с латеральной стороны, d – вид сверху; условные обозначения: liv - вертикальная часть аналога подвздошно-бедренной связки, ligamentum iliofemoralelih – горизонтальная часть аналога подвздошно-бедренной связки, ligamentum iliofemoraleli – аналог седалищно-бедренной связки, ligamentum ischiofemoralelp – аналог лобково-бедренной связки, ligamentum pubofemorale.

По причине расположения общего центра масс системы позади от оси вращения объемная тазовая часть модели стремилась отклониться назад в сагиттальной плоскости. За счет наклона объемной тазовой части модели назад в этом направлении смещался и общий центр масс системы. При этом его проекция общего центра масс оказывалась достаточно далеко позади от оси, соединяющей центр шарнира и точку опоры объемной тазовой части модели на подъемник. Одновременно натягивался аналог лобково-бедренной связки и вертикальная часть аналога подвздошно-бедренной связки. Указанному способствовал наклон бедренной части модели в латеральную сторону и ее поворот вперед вокруг вертикальной оси. Аналог лобково-бедренной связки и вертикальной части аналога подвздошно-бедренной связки, будучи натянуты, стопорили шарнир модели в сагиттальной плоскости. Отклонению объемной тазовой части модели вниз в медиальную сторону и повороту в горизонтальной плоскости препятствовал подъемник. Он имитировал вторую опорную конечность. Кроме подъемника, натянутого аналога лобково-бедренной связки и вертикальной части аналога подвздошно-бедренной связки, для поддержания объемной тазовой части модели в положении покоя не требовалось дополнительного внешнего усилия.

В норме при поддержании симметричной двухопорной ортостатической позы наблюдается симметричное разгибание в тазобедренных суставах, articulatio coxae. Избыточное разгибание, которое мы воспроизвели на модели, наблюдается при поддержании симметричной двухопорной ортостатической позы при двухстороннем коксартрозе. Однако значительный наклон таза, pelvis, назад в сагиттальной плоскости невозможен при вертикальном расположении опорных нижних конечностей. Смещенный назад общий центр масс тела неизбежно приводит к потере равновесия.

Обсужденные данные свидетельствуют, что в симметричной двухопорной ортостатической позе при разгибании в обоих тазобедренных суставах, articulatio coxae, возможна стабилизация таза, pelvis, в горизонтальной, фронтальной и сагиттальной плоскости без напряжения мышц. С одной стороны, она может быть достигнута одновременным натяжением: лобково-бедренной связки, ligamentum pubofemorale, и вертикальной части подвздошно-бедренной связки, ligamentum iliofemorale. При данном варианте симметричной двухопорной ортостатической позы избыточный наклон таза, pelvis, назад в сагиттальной плоскости теоретически может быть компенсирован кифозом в поясничном отделе позвоночника или произвольным наклоном тела вперед.



Моделирование симметричной двухопорной ортостатической позы с наклоном таза назад и наклоном бедра вперед при отсутствии связки головки бедренной кости

Далее электромеханической модели тазобедренного сустава нами воспроизведена симметричная двухопорная ортостатическая поза с наклоном таза, pelvis, назад, а опорных нижних конечностей – вперед. Для стабилизации объемной тазовой части модели использован подъемник объемной тазовой части, снабженный колесами. Наконечник его вертикального стержня упирался снизу в опорный кронштейн объемной тазовой части модели и препятствовал ее отклонению во фронтальной и сагиттальной плоскости. Подъемник объемной тазовой части и бедренная часть модели воспроизводили две опорные нижние конечности. Бедренная часть модели располагалась с наклоном вперед в сагиттальной плоскости на 15°, с отклонением наружу во фронтальной плоскости на 10° и поворотом вокруг вертикальной оси вперед на 10°. В опыте нами не изменялась длина аналога средней ягодичной мышцы и аналога комплекса коротких мышц, вращающих бедро наружу.

Высота подъемника отрегулирована так, что изображения крыльев подвздошных костей, ala ossis ilii, тазового элемента модели находились приблизительно на одном уровне (Рис. 7).

Рис. 7. Моделирование симметричной двухопорной ортостатической позы на электромеханической модели тазобедренного сустава человека с нагруженной объемной тазовой частью, с аналогами мышц и наружных связок, но без аналога связки головки бедренной кости (наклон таза назад, отклонение бедра вперед); вверху – вид спереди, внизу – вид сзади.


В сагиттальной плоскости под действием прикрепленной нагрузки объемная тазовая часть модели отклонялась назад до угла 12° от вертикали. При этом тазовый элемент объемной тазовой части модели спонтанной поворачивался назад в горизонтальной плоскости до угла 9° относительно центра шарнира бедренной части модели (Рис. 8).


Рис. 8. Моделирование симметричной двухопорной ортостатической позы на электромеханической модели тазобедренного сустава человека с нагруженной объемной тазовой частью, с аналогами мышц и наружных связок, но без аналога связки головки бедренной кости (наклон таза назад, отклонение бедра вперед); вверху – вид сверху, внизу – вид с латеральной стороны.

Длинная ось вертлужного элемента объемной тазовой части модели была отклонена назад, вверх и в медиальную сторону. В шарнире модели присутствовало разгибание, супинация и среднее положение между приведением и отведением. Динамометры аналога комплекса коротких мышц, вращающих бедро наружу и аналога средней ягодичной мышцы, не регистрировали усилия.

После стабилизации объемной тазовой части модели проанализировано в шарнире, ориентация аналогов связок и степень их натяжения. Отмечено натяжение аналога лобково-бедренной связки и вертикальной части аналога подвздошно-бедренной связки. Аналог седалищно-бедренной связки и горизонтальная часть аналога подвздошно-бедренной связки оказались не натянуты. Означенное визуально подтверждалось их плавными изгибами без прижатия к элементам бедренной части модели. Разобщения сферической головки шарнира и ответной сферической поверхности вертлужного элемента модели не наблюдалось (Рис. 9).

a

b

c

d
Рис. 9. Аналоги связок и динамометры электромеханической модели тазобедренного сустава человека с нагруженной 
объемной тазовой частью (моделирование симметричной двухопорной ортостатической позы с наклоном таза назад, а бедра вперед при отсутствии аналога связки головки бедренной кости); a – вид спереди, b – вид сзади, c – вид с латеральной стороны, d – вид сверху; условные обозначения: liv - вертикальная часть аналога подвздошно-бедренной связки, ligamentum iliofemoralelih – горизонтальная часть аналога подвздошно-бедренной связки, ligamentum iliofemoraleli – аналог седалищно-бедренной связки, ligamentum ischiofemoralelp – аналог лобково-бедренной связки, ligamentum pubofemorale.

По причине расположения общего центра масс системы позади от оси вращения объемная тазовая часть модели стремилась отклониться назад в сагиттальной плоскости. За счет наклона объемной тазовой части модели назад в этом направлении смещался и общий центр масс системы. Однако посредством наклона бедренной части модели вперед удалось компенсировать как избыточный наклон объемной тазовой части модели назад в сагиттальной плоскости, так и переместить вперед общий центр масс. При этом его проекция общего центра масс приблизилась к оси, соединяющей центр шарнира и точку опоры объемной тазовой части модели на подъемник. Натяжение аналога лобково-бедренной связки и вертикальной части аналога подвздошно-бедренной связки стопорило, что стабилизировало объемную тазовую часть модели в сагиттальной плоскости.

Отклонению объемной тазовой части модели вниз в медиальную сторону и повороту в горизонтальной плоскости препятствовал подъемник. Он имитировал вторую опорную конечность. Кроме подъемника, натянутого аналога лобково-бедренной связки и вертикальной части аналога подвздошно-бедренной связки, для поддержания объемной тазовой части модели в положении покоя не требовалось дополнительного внешнего усилия.

Эксперимент показал, что в симметричной двухопорной ортостатической позе при разгибании в обоих тазобедренных суставах, articulatio coxae, возможна стабилизация таза, pelvis, в горизонтальной, фронтальной и сагиттальной плоскости без напряжения мышц. С одной стороны, она может достигаться одновременным натяжением: лобково-бедренной связки, ligamentum pubofemorale, и вертикальной части подвздошно-бедренной связки, ligamentum iliofemorale. Для указанного необходим наклона вперед обеих нижних конечностей, а также поворот таза, pelvis, назад в горизонтальной плоскости относительно одного из тазобедренных суставов, articulatio coxae. В случае расположения таза, pelvis, перпендикулярно переднезадней оси происходит натяжение только лобково-бедренных связок, ligamentum pubofemorale, с двух сторон. В первом случае избыточный наклон таза, pelvis, назад в сагиттальной плоскости может быть компенсирован произвольным наклоном тела вперед или фиксированным кифозом. 


Смотри также:

а) Базовые эксперименты на электромеханической модели 

Бедренная часть комбинированной модели тазобедренного сустава 

Элементы электромеханической модели тазобедренного сустава человека

Электромеханическая модель без аналогов связок

Упрощение электромеханической модели тазобедренного сустава

Моделирование движений аналога LCF 

Упрощенная модель вертлужной впадины 

Модель как аналог рычага третьего рода 

Моделирование функции LCF 

Моделирование действия веса тела 

Имитация взаимодействия средней ягодичной мышцы и LCF 

Анализ взаимодействия средней ягодичной мышцы и LCF

Моделирование движений в горизонтальной плоскости 

Моделирование супинации 

Моделирование эффекта авторотации  

Обсуждение эффекта авторотации 

Моделирование перемещения общего центра масс тела 

Моделирование взаимодействия наружных связок и LCF 

Моделирование эффекта автостабилизации

Моделирование взаимодействия веса тела и отводящей группы мышц 

Эффект авторотации с аналогом отводящей группы мышц 

Измерение силы, вызывающей авторотацию 

Воспроизведение спонтанной авторотации

Воспроизведение управляемой авторотации  

Обсуждение регулируемого эффекта авторотации  

Моделирование взаимодействия аналогов связок и мышц 

Имитация перемещения общего центра масс тела при наличии аналогов связок и мышц 

Моделирование напряженной одноопорной позы с участием средней ягодичной мышцы 

Моделирование напряженной одноопорной ортостатической позы с участием средней ягодичной мышцы и коротких ротаторов бедра 

Моделирование напряженной одноопорной ортостатической позы с участием коротких ротаторов бедра 

Моделирование ненапряженной одноопорной ортостатической позы 

Моделирование симметричной двухоопорной ортостатической позы  

Моделирование асимметричной двухоопорной ортостатической позы 

Моделирование начала первого двухопорного периода шага 

Моделирование завершения первого двухопорного периода шага  

Моделирование начала одноопорного периода шага 

Моделирование середины одноопорного периода шага 

Моделирование завершения одноопорного периода шага 

Наблюдение: износ нижней поверхности головки бедренной части механической модели 

б) Электромеханическая модель без LCF 

Моделирование функции тазобедренного сустава без LCF

Моделирование первого двухопорного периода шага при отсутствии LCF 

Моделирование начала одноопорного периода шага при отсутствии LCF 

Моделирование середины одноопорного периода шага при отсутствии LCF 

Моделирование завершения одноопорного периода шага при отсутствии LCF 

Моделирование начала второго двухопорного периода шага при отсутствии LCF

                                                                     

Критика

Главным недочетом описанных ранее конструкций, по нашему мнению, являлась недостаточная упругость аналогов связок. В описанной конструкции мы использовали гибкий элемент - аналог LCF, выполненный из металла и усоврешенствовали способ его крепления. В норме LCF присоединяется к вертлужной впадине в нескольких точках, что нам воспроизвести не удалось. Кроме этого, основой бедренной части модели явился субтотальный эндопротез тазобедренного сустава. Мы согласны с тем, что данное медицинское изделие лишь отчасти воспроизводит проксимальный отдел нативной бедренной кости. 

Примечания

Экспериментальные исследования на обсуждаемой модели начались в 2009 году. Полная сборка конструкции описана в заявка на изобретение RU2009124926A. Впервые полную версию представленного выше экспериментального материала мы опубликовали в девятнадцатой главе четвертого тома монографии с юмором названой «Биомеханика пингвинов» (2018) [academia.edu]. Данная работа написана для личного использования и узкого круга лиц. В книге собраны, систематизированы и проанализированы результаты 25-ти лет изучения ligamentum capitis femoris и смежных тем. 
Расшифровку цитированных источников смотри в Списке литературы.

Первоисточник

Архипов СВ. Биомеханика пингвинов: заметки к вопросу о причинах ковыляющей походки и перспективах ее ремоделирования во имя обретения грациозности, сочиненные врачом, к.м.н. Сергеем Васильевичем Архиповым, в бытность им с 1992-го по 2017-й год хирургом и травматологом-ортопедом, по вдохновению в 1991-ом году его сестрою Еленой Васильевной, со светлой любовью к ней и благодарностью! Манускрипт в 5 томах. Т. 4. Главы 17-21. Напечатано Автором во граде Королев при попечении его супруги Людмилы Николаевны, ММXVIII A.D. [2018], bonum factum! [на благо и счастье], 549 с. [academia.edu]

Ключевые слова

ligamentum capitis femorisligamentum teres, связка головки бедра, отсутствие, дисфункция, поза, эксперимент, электромеханическая модель, средняя ягодичная мышца, короткие ротаторы

 СОДЕРЖАНИЕ РЕСУРСА

Эксперименты и наблюдения

1991-2021АрхиповСВ

Популярные статьи

НОВЫЕ ПУБЛИКАЦИИ САЙТА

  Н ОВЫЕ ПУБЛИКАЦИИ САЙТА:      06 .03 .2025 ДРЕВНЕЙШИЕ СИНОНИМЫ. Пост в группах  соцсети facebook. 01 .03 .2025 Публикации о LCF в 2025 году (Февраль)   Статьи и книги с упоминанием LCF опубликованные в феврале 2025 года. 27 .02 .2025 Создан раздел Facebook  О публикациях в данной социальной сети. Группа в Facebook  О  создании группы. Интернет-журнал "О КРУГЛОЙ СВЯЗКЕ БЕДРА", февраль 2025 . Первый выпуск.  26 .02 .2025 НИЖНИЙ ПОРТАЛ ДЛЯ АРТРОСКОПИИ ТАЗОБЕДРЕННОГО СУСТАВА . Объединенная  PDF   версия статьи: Архипов СВ. Нижний портал для артроскопии тазобедренного сустава: пилотное иссле дование (26.02.2025).  22 .02 .2025 Статья: Архипов СВ. Эндопротезы с аналогом ligamentum capitis femoris как свидетельства смены парадигмы в артропластике: Систематический обзор. Эндопротез с LCF. Часть 1 :  История, материал и методы;  Эндопротез с LCF. Часть 2 : Результаты и списки; Эндопротез с LCF. Часть 3 : ...

Эндопротез с LCF. Часть 1

  Эндопротезы с аналогом ligamentum capitis femoris как свидетельства смены парадигмы в артропластике: Систематический обзор Часть  1. История, материал и методы Архипов С.В., независимый исследователь, Йоенсуу, Финляндия  

Эндопротез с LCF. Часть 2

  Эндопротезы с аналогом ligamentum capitis femoris как свидетельства смены парадигмы в артропластике: Систематический обзор Часть 2. Результаты и списки Архипов С.В., независимый исследователь, Йоенсуу, Финляндия  

2009LinaresMA

    Наш перевод заявки на изобретение: Linares MA . Artificial ligaments for joint applications. WO 2009039164 A 1 ( Искусственные связки для суставов , 2009 ). Оригинал на английском языке доступен по ссылке: 2009 LinaresMA . WO2009039164A1 США Изобретатель: Мигель Линарес Приложения по всему миру 2008 EP WO US 2010 US US Заявка PCT/US2008/07665 события: 2008-09-17 Заявка подана Linares Medical Devices, Llc 2008-09-17 Приоритет EP08831763A 2009-03-26 Публикация WO2009039164A1   Искусственные связки для суставов Мигель Линарес   Аннотация Связка, встроенная в протезный сустав, выполненная из пластифицированного, удлиненного и деформируемого материала. Внутри деформируемого материала расположен волокнистый материал, при этом волокнистый материал заканчивается первыми и вторыми увеличенными участками шариков, расположенными вблизи увеличенных концов карманов, связанных с деформируемыми материалами. Первая и вторая кости определяют область сустава между ними, дефо...

СОДЕРЖАНИЕ РЕСУРСА

  LCF –  ключ к грациозной походке, выяснению причин болезней тазобедренного сустава и опровержению мифов о них. Мы представляем перспективное научное знание, необходимое для сбережения здоровья, разработки  имплантов и  новых способов лечения дегенеративно-дистрофических заболеваний тазобедренного сустава. Цель проекта: содействие сохранению нормальной походки и качества жизни, помощь в изучении механики  тазобедренного сустава, разработке эффективных способов лечения его болезней и травм.   СОДЕРЖАНИЕ  РЕСУРСА  БИОМЕХАНИКА И МОРФОМЕХАНИКА    ( О взаимосвязи механики и морфологии тазобедренного сустава ) 1586 PiccolominiA . Одно из первых рассуждений о биомеханике  LCF  с описанием ее формы, механических свойств и крепления. 1728 WaltherAF.   В выбранном отрывке обсуждаются анатомия, механические свойства и функции  LCF . 2004Архипов-БалтийскийСВ. Новая механика тазобедренного сустава.  2004...