К основному контенту

НОВЫЕ ПУБЛИКАЦИИ

  Н ОВЫЕ ПУБЛИКАЦИИ РЕСУРСА     17 .11.2025 2025 ChenJH _ AcklandD .   Авторы в эксперименте доказали роль  LCF  в разгрузке верхнего сектора вертлужной впадины и головки бедра.  2025 SrinivasanS _ SakthivelS . Перевод статьи, посвященной морфологии LCF у населения Индии.   2024 GillHS . Для уточнения роли LCF автор рекомендует сочетание экспериментальных исследований с компьютерным моделированием.   16 .11.2025 АрхиповСВ. К вопросу о прочности LCF .  2024StetzelbergerVM_TannastM.     Авторы обнаружили низкую прочность LCF при фемороацетабулярном импинджменте .  1996 ChenHH _ LeeMC . Авторы исследуют прочность LCF при аваскулярном некрозе и переломе шейки бедренной кости.  2025 ChenJH _ AcklandD . Авторы в эксперименте доказали роль LCF  в разгрузке верхнего сектора вертлужной впадины и головки бедра. 15 .11.2025 2002МалаховОА_КосоваИА.   Авторами показано, что двойное контрастирование тазо...

Моделирование середины одноопорного периода шага при отсутствии LCF.


Моделирование середины одноопорного периода шага при отсутствии LCF.

Моделирование середины одноопорного периода шага в отсутствии связки головки бедренной кости без сгибания с наклоном таза вперед.

Для настоящих экспериментов нами собрана электромеханическая модель тазобедренного сустава человека с объемной тазовой частью, которая имитировала тазобедренный сустав, articulatio coxae, без связки головки бедренной кости, ligamentum capitis femoris. Конструкция воссоздала функциональную и морфологическую ситуацию, свойственную для коксартроза, тазобедренного сустава, articulatio coxae, замещенного стандартным эндопротезом, а также полного повреждения связки головки бедренной кости, ligamentum capitis femoris. Модель содержала бедренную часть, объемную тазовую часть с нагрузкой, аналог средней ягодичной мышцы и аналог комплекса коротких мышц, вращающих бедро наружу, а также аналоги наружных связок: аналог седалищно-бедренной связки, аналог лобково-бедренной связки, аналог вертикальной и горизонтальной части подвздошно-бедренной связки. С целью моделирования действия веса тела к крайнему отверстию грузового кронштейна объемной тазовой части прикреплялась нагрузка массой 1 кг. В соответствующих случаях для стабилизации объемной тазовой части модели использован подъемник, снабженный колесами.

Используя описанное устройство, мы смоделировали основные периоды одиночного шага человека при отсутствии связки головки бедренной кости, ligamentum capitis femoris. В экспериментах нами воспроизводились положения таза, pelvis, и бедра, os femur, в одиночном шаге при ходьбе пациента, страдающего коксартрозом. Исходные данные были получены при обследовании посредством Системы видеоанализа движений с программным обеспечением компании C-Motion. Эти сведения позволили воссоздать близкую к реальности смену положений таза, pelvis, и бедра, os femur, при ходьбе человека с пораженным тазобедренным суставом, articulatio coxae, явно без связки головки бедренной кости, ligamentum capitis femoris.

Для определения ориентации таза, pelvis, в горизонтальной и фронтальной плоскости нами использованы изображения виртуальных моделей головок бедренных костей, caput femoris, предоставляемые в отчете Системы видеоанализа движений. В соответствие с многоплоскостным поворотом таза, pelvis, закономерно изменялось положение линии, соединяющей центры головки бедренной кости, caput femoris, опорной и переносной ноги. По нашему мнению, использование означенного ориентира позволило точнее воспроизвести позицию таза, pelvis, в горизонтальной и фронтальной плоскости.

Завершив моделирование начала одноопорного периода шага, мы воспроизвели середину одноопорного периода шага. Бедренная часть модели установлена вертикально в сагиттальной плоскости, а отклонение во фронтальной плоскости не изменялось. Положение объемной тазовой части модели осталось зафиксированным аналогом средней ягодичной мышцы. При этом его длина была уменьшена. В результате увеличился наклон объемной тазовой части модели вверх в латеральную сторону, что свойственно для середины одноопорного периода шага при коксартрозе. Со стороны шарнира высота расположения изображения крыла подвздошной кости тазового элемента модели стала существенно ниже, чем с противоположной (Рис. 1).


Рис. 1. Моделирование середины одноопорного периода шага на электромеханической модели тазобедренного сустава человека с нагруженной объемной тазовой частью, с аналогами мышц и наружных связок, но без аналога связки головки бедренной кости (наклон таза вперед и в латеральную сторону, сгибание 0°); вверху – вид спереди, внизу – вид сзади.


В сагиттальной плоскости увеличился наклон объемной тазовой части модели вперед по сравнению с крайней позицией, наблюдавшейся при имитации начала одноопорного периода шага. В горизонтальной объемная тазовая часть модели спонтанно повернулась вперед и наружу, что обусловило положение пронации в шарнире. Величина отведения в шарнире модели увеличилась в связи с наклоном объемной тазовой части модели во фронтальной плоскости вверх в латеральную сторону (Рис. 2).


Рис. 2. Моделирование начала одноопорного периода шага на электромеханической модели тазобедренного сустава человека с нагруженной объемной тазовой частью, с аналогами мышц и наружных связок, но без аналога связки головки бедренной кости (наклон таза вперед и в латеральную сторону, сгибание 0°); вверху – вид сверху, внизу – вид с латеральной стороны.

Длинная ось вертлужного элемента объемной тазовой части модели была отклонена назад, вверх и в медиальную сторону. В шарнире модели в сагиттальной плоскости воспроизведено нулевое положение. Динамометр аналога комплекса коротких мышц, вращающих бедро наружу, не регистрировал нагрузки. Динамометр аналога средней ягодичной мышцы зафиксировал уменьшение усилия, требующегося для удержания объемной тазовой части модели в положении покоя.

Снижение усилия, которое регистрировал динамометр аналога средней ягодичной мышцы, мы связываем с увеличением отклонения объемной тазовой части вверх в латеральную сторону во фронтальной плоскости. Означенное привело к уменьшению плеча момента веса объемной тазовой части модели, что отразилось на показаниях указанного динамометра (Рис. 3).

a

b

c

d
Рис. 3. Аналоги связок и динамометры электромеханической модели тазобедренного сустава человека с нагруженной объемной тазовой частью (моделирование середины одноопорного периода шага в отсутствии аналога связки головки бедренной кости при наклоне таза вперед и в латеральную сторону со сгибанием 0°); a – вид спереди, b – вид сзади, c – вид с латеральной стороны, d – вид сверху; условные обозначения: liv - вертикальная часть аналога подвздошно-бедренной связки, ligamentum iliofemoralelih – горизонтальная часть аналога подвздошно-бедренной связки, ligamentum iliofemoraleli – аналог седалищно-бедренной связки, ligamentum ischiofemoralelp – аналог лобково-бедренной связки, ligamentum pubofemorale.

После стабилизации объемной тазовой части модели проанализировано соотношение в шарнире, ориентация аналогов связок и степень их натяжения. Отмечено появление натяжения аналога седалищно-бедренной связки. Прочие аналоги наружных связок остались не натянуты. Это подтверждалось их плавным изгибом без прижатия к элементам бедренной части модели. Разобщения сферической головки шарнира и ответной сферической поверхности вертлужного элемента модели не наблюдалось. Поверхности пары трения шарнира плотно смыкались между собой.

Объемная тазовая часть модели имела тенденцию к наклону вперед в сагиттальной плоскости, а также вниз в медиальную сторону во фронтальной плоскости. Стабилизация объемной тазовой части модели обеспечивалась аналогом средней ягодичной мышцы и аналогом седалищно-бедренной связки. Анализ соотношения элементов шарнира свидетельствует, что аналог седалищно-бедренной связки препятствовал повороту объемной тазовой части вперед в сагиттальной плоскости.  В горизонтальной плоскости действующие силы оказались уравновешены, причем без участия аналога комплекса коротких мышц, вращающих бедро наружу. Для поддержания модели в положении покоя не требовалось дополнительного внешнего усилия.

Эксперимент продемонстрировал, что при отклонении в латеральную сторону объемной тазовой части необходимо меньшее усилие во фронтальной плоскости для ее удержания, чем при меньшем отведении в шарнире.  Мы это связываем с уменьшением плеча веса тела. Аналогичная картина наблюдается при ходьбе пациентов с коксартрозом. Причем, кроме таза, pelvis, отдельные из них отклоняют в сторону опоры корпус тела, плечевой пояс, голову и даже руку (Архипов С.В., 2013). Таким образом, удается приблизить проекцию общего центра масс тела к центру вращения опорного тазобедренного сустава, articulatio coxae. Описанный интуитивно выработанный прием снижает нагрузку на отводящую группу мышц, а значит, облегчает ходьбу.  Нами подмечено, что наклон таза, pelvis, в латеральном направлении и поворот вперед у пациентов, страдающих коксартрозом, обеспечивается форсированным движением. Идущий устремляет тело вперед-наружу, обычно начиная «бросок» с плечевого пояса и головы.


Моделирование середины одноопорного периода шага в отсутствии связки головки бедренной кости при разгибании 5º с наклоном таза вперед.

Далее на электромеханической модели тазобедренного сустава человека мы воспроизвели финальную стадию середины одноопорного периода шага. Для означенного момента характерно начало разгибания в тазобедренном суставе, articulatio coxae. Карданное соединение бедренной части модели с основанием деблокировано. Произведен наклон бедренной части модели вперед на угол 5° в сагиттальной плоскости, после чего карданное соединение бедренной части модели с основанием зафиксировано вновь.

Объемная тазовая часть модели осталась зафиксирована аналогом средней ягодичной мышцы. Исходно изображения крыльев подвздошных костей, ala ossis ilii, тазового элемента модели находились на разных уровнях. Со стороны шарнира модели высота расположения изображения крыла подвздошной кости, ala ossis ilii, была ниже, чем с противоположенной. Затем нами укорочен элемент крепления аналога средней ягодичной мышцы и удлинен аналог коротких мышц, вращающих бедро наружу. В результате объемная тазовая часть модели дополнительно отклонилась вверх и в латеральную сторону во фронтальной плоскости (Рис. 4).


Рис. 4. Моделирование середины одноопорного периода шага на электромеханической модели тазобедренного сустава человека с нагруженной объемной тазовой частью, с аналогами мышц и наружных связок, но без аналога связки головки бедренной кости (наклон таза вперед и в латеральную сторону, разгибание 5°); вверху – вид спереди, внизу – вид сзади.

По нашему замыслу, указанное имитировало еще больший наклон таза, pelvis, в сторону опорной ноги.

В горизонтальной плоскости тазовый элемент объемной тазовой части модели незначительно повернулся назад, а в сагиттальной плоскости наклонился вперед (Рис. 5).


Рис. 5. Моделирование начала одноопорного периода шага на электромеханической модели тазобедренного сустава человека с нагруженной объемной тазовой частью, с аналогами мышц и наружных связок, но без аналога связки головки бедренной кости (наклон таза вперед и в латеральную сторону, разгибание 5°); вверху – вид сверху, внизу – вид с латеральной стороны.

Отклонение объемной тазовой части назад в горизонтальной плоскости компенсировало наклон бедренной части вперед в сагиттальной плоскости. Длинная ось вертлужного элемента объемной тазовой части модели была обращена вверх, назад и в медиальную сторону.

В шарнире модели наблюдалось разгибание, отведение и супинация. Таким образом, после укорочения аналога средней ягодичной мышцы и удлинения аналога коротких мышц, вращающих бедро наружу, в шарнире модели продолжилось отведение, а умеренная пронация сменилась незначительной супинацией. Динамометр аналога комплекса коротких мышц, вращающих бедро наружу, не фиксировал усилия. Величина силы, зарегистрированной аналогом средней ягодичной мышцы, уменьшилась. Отсутствие усилия, которое регистрировал динамометр аналога комплекса коротких мышц, вращающих бедро наружу, показало, что для удержания объемной тазовой части модели в положении покоя в горизонтальной плоскости усилия не требовалось (Рис. 6).

a

b
c

d
Рис. 6. Аналоги связок и динамометры электромеханической модели тазобедренного сустава человека с нагруженной объемной тазовой частью (моделирование середины одноопорного периода шага в отсутствии аналога связки головки бедренной кости при наклоне таза вперед и в латеральную сторону с разгибанием 5°); a – вид спереди, b – вид сзади, c – вид с латеральной стороны, d – вид сверху; условные обозначения: liv - вертикальная часть аналога подвздошно-бедренной связки, ligamentum iliofemoralelih – горизонтальная часть аналога подвздошно-бедренной связки, ligamentum iliofemoraleli – аналог седалищно-бедренной связки, ligamentum ischiofemoralelp – аналог лобково-бедренной связки, ligamentum pubofemorale.


Уменьшение усилия, зафиксированное динамометром аналога средней ягодичной мышцы, мы связываем с приближением общего центра масс системы к шарниру и закономерным уменьшением плеча момента веса объемной тазовой части.

После стабилизации объемной тазовой части модели проанализировано соотношение в шарнире, ориентация аналогов связок и степень их натяжения. Замечено отсутствие натяжения аналогов всех связок. Это подтверждалось отсутствием их прижатия к элементам бедренной части модели и плавным изгибам. Разобщения сферической головки шарнира и ответной сферической поверхности вертлужного элемента модели не наблюдалось. Поверхности пары трения шарнира плотно смыкались во всех отделах.

По причине расположения общего центра масс системы выше, медиальнее и позади центра вращения шарнира объемная тазовая часть модели имела тенденцию к отклонению назад в сагиттальной плоскости и вниз в медиальную сторону во фронтальной плоскости. Стабилизация объемной тазовой части модели обеспечивалась только аналогом средней ягодичной мышцы. Для удержания объемной тазовой части модели в равновесии не требовалось дополнительного внешнего усилия.

Поставленный опыт подтвердил, что при отклонении в латеральную сторону объемной тазовой части необходимо меньшее усилие во фронтальной плоскости для ее удержания. Мы зарегистрировали парадокс: имитация незначительного разгибания 5° и увеличение отведения вызывает супинацию. Указанное наблюдается при «активности» аналога средней ягодичной мышцы, которая в норме является факультативным пронатором.  


Смотри также:

а) Базовые эксперименты на электромеханической модели 

Бедренная часть комбинированной модели тазобедренного сустава 

Элементы электромеханической модели тазобедренного сустава человека

Электромеханическая модель без аналогов связок

Упрощение электромеханической модели тазобедренного сустава

Моделирование движений аналога LCF 

Упрощенная модель вертлужной впадины 

Модель как аналог рычага третьего рода 

Моделирование функции LCF 

Моделирование действия веса тела 

Имитация взаимодействия средней ягодичной мышцы и LCF 

Анализ взаимодействия средней ягодичной мышцы и LCF

Моделирование движений в горизонтальной плоскости 

Моделирование супинации 

Моделирование эффекта авторотации  

Обсуждение эффекта авторотации 

Моделирование перемещения общего центра масс тела 

Моделирование взаимодействия наружных связок и LCF 

Моделирование эффекта автостабилизации

Моделирование взаимодействия веса тела и отводящей группы мышц 

Эффект авторотации с аналогом отводящей группы мышц 

Измерение силы, вызывающей авторотацию 

Воспроизведение спонтанной авторотации

Воспроизведение управляемой авторотации  

Обсуждение регулируемого эффекта авторотации  

Моделирование взаимодействия аналогов связок и мышц 

Имитация перемещения общего центра масс тела при наличии аналогов связок и мышц 

Моделирование напряженной одноопорной позы с участием средней ягодичной мышцы 

Моделирование напряженной одноопорной ортостатической позы с участием средней ягодичной мышцы и коротких ротаторов бедра 

Моделирование напряженной одноопорной ортостатической позы с участием коротких ротаторов бедра 

Моделирование ненапряженной одноопорной ортостатической позы 

Моделирование симметричной двухоопорной ортостатической позы  

Моделирование асимметричной двухоопорной ортостатической позы 

Моделирование начала первого двухопорного периода шага 

Моделирование завершения первого двухопорного периода шага  

Моделирование начала одноопорного периода шага 

Моделирование середины одноопорного периода шага 

Моделирование завершения одноопорного периода шага 

Наблюдение: износ нижней поверхности головки бедренной части механической модели 

б) Электромеханическая модель без LCF 

Моделирование функции тазобедренного сустава без LCF

Моделирование первого двухопорного периода шага при отсутствии LCF 

Моделирование начала одноопорного периода шага при отсутствии LCF

                                                                     

Критика

Главным недочетом описанных ранее конструкций, по нашему мнению, являлась недостаточная упругость аналогов связок. В описанной конструкции мы использовали гибкий элемент - аналог LCF, выполненный из металла и усовершенствовали способ его крепления. В норме LCF присоединяется к вертлужной впадине в нескольких точках, что нам воспроизвести не удалось. Кроме этого, основой бедренной части модели явился субтотальный эндопротез тазобедренного сустава. Мы согласны с тем, что данное медицинское изделие лишь отчасти воспроизводит проксимальный отдел нативной бедренной кости. 


Примечания

Экспериментальные исследования на обсуждаемой модели начались в 2009 году. Полная сборка конструкции описана в заявка на изобретение RU2009124926A. Впервые полную версию представленного выше экспериментального материала мы опубликовали в девятнадцатой главе четвертого тома монографии с юмором названой «Биомеханика пингвинов» (2018) [academia.edu]. Данная работа написана для личного использования и узкого круга лиц. В книге собраны, систематизированы и проанализированы результаты 25-ти лет изучения ligamentum capitis femoris и смежных тем. 
Расшифровку цитированных источников смотри в Списке литературы.

Первоисточник

Архипов СВ. Биомеханика пингвинов: заметки к вопросу о причинах ковыляющей походки и перспективах ее ремоделирования во имя обретения грациозности, сочиненные врачом, к.м.н. Сергеем Васильевичем Архиповым, в бытность им с 1992-го по 2017-й год хирургом и травматологом-ортопедом, по вдохновению в 1991-ом году его сестрою Еленой Васильевной, со светлой любовью к ней и благодарностью! Манускрипт в 5 томах. Т. 4. Главы 17-21. Напечатано Автором во граде Королев при попечении его супруги Людмилы Николаевны, ММXVIII A.D. [2018], bonum factum! [на благо и счастье], 549 с. [academia.edu]


Ключевые слова

ligamentum capitis femorisligamentum teres, связка головки бедра, отсутствие, дисфункция, ходьба, эксперимент, электромеханическая модель, средняя ягодичная мышца, короткие ротаторы

 СОДЕРЖАНИЕ РЕСУРСА

Эксперименты и наблюдения

1991-2021АрхиповСВ


Популярные статьи

Каталог тестов патологии LCF

   каталог тестов патологии ligamentum capitis femoris Архипов С.В.     Содержание [i]   Резюме [ii]   Введение [iii]   Тестирование в положении лежа [iv]   Тестирование в положении стоя [v]   Изучение походки [vi]   Список литературы [vii]   Приложение [i]   Резюме Представлено описание тестов для выявления и дифференциальной диагностики патологии ligamentum capitis femoris ( LCF ). [ii]   Введение Одна из первых работ посвященная диагностике травмы LCF, показала многообразие симптомов: боль в паху, ригидность тазобедренного сустава, иногда длительно существующие минимальные клинические данные или же признаки такие же как при остеоартрите (1997GrayA_VillarRN). По прошествии более десятилетия исследователи констатировали: «к сожалению, не существует специального теста для обнаружения разрывов LCF», известные на то время признаки являлись неспецифичны и наблюдались также при другой внутрисуставной патологии тазобедренн...

К вопросу о прочности LCF

  К  вопросу о прочности   ligamentum   capitis   femoris Архипов С.В.     Содержание [i]   Аннотация [ii]   О прочности LCF [iii]   Список литературы [iv]   Приложение [i]   Аннотация Наше мнение по поводу низкой прочности  ligamentum   capitis   femoris  ( LCF ), согласно исследованию  Stetzelberger   V . M . и соавт. (2024). [ii]   О прочности LCF Статья  Stetzelberger   V . M . и соавт . « Насколько прочна круглая связка бедра? Биомеханический анализ»  (2024), примечательна строгой методологией и глубиной изучения литературы. В полученных авторами результатах наше внимание привлекла низкая  предельная нагрузка до разрушения 126±92 Н у  LCF   ( 2024StetzelbergerVM_TannastM ).  Усредненно это эквивалентно 13 кг. При определении прочности LCF, полученной у группы лиц неустановленного возраста с переломом шейки бедренной кости, другая команда исследователей о...

Кто и когда впервые описал повреждение LCF? Часть 1

  Кто и когда впервые описал повреждение   ligamentum capitis femoris?  Часть 1. Архипов С.В.   Содержание Часть 1 [i]   Аннотация [ii]   Введение [iii]   Доисторический период Часть 2 [iv]   Исторический период [v]   Вмешательства в текст Часть 3 [vi]   Египетский врач Часть 4 [vii]   Азиатский прорицатель [viii]   Хронологическая таблица Часть 5 [ix]   Заключение [x]   Список литературы [xi]   Приложение [i]   Аннотация Книга «Берешит», в переводе именуемая «Бытие», является одним из древнейших художественных текстов. Кроме тенденциозно трансформированных легенд и вымысла, она содержит важные медицинские и естественнонаучные факты. Произведение написано на севере Египта вскоре после минойского извержения, вероятно в конце 17-го века до современной эры. Над протографом работал азиатский прорицатель, ставший чиновником и египетский врач-энциклопедист. Последний впервые в истории описывает механизм повреждени...

Кто и когда впервые описал повреждение LCF? Часть 5

  Кто и когда впервые описал повреждение   ligamentum capitis femoris?  Часть 5. Архипов С.В.     Содержание Часть 1 [i]   Аннотация [ii]   Введение [iii]   Доисторический период Часть 2 [iv]   Исторический период [v]   Вмешательства в текст Часть 3 [vi]   Египетский врач Часть 4 [vii]   Азиатский прорицатель [viii]   Хронологическая таблица Часть 5 [ix]   Заключение [x]   Список литературы [xi]   Приложение [i]   Аннотация Книга «Берешит», в переводе именуемая «Бытие», является одним из древнейших художественных текстов. Кроме тенденциозно трансформированных легенд и вымысла, она содержит важные медицинские и естественнонаучные факты. Произведение написано на севере Египта вскоре после минойского извержения, вероятно в конце 17-го века до современной эры. Над протографом работал азиатский прорицатель, ставший чиновником и египетский врач-энциклопедист. Последний впервые в истории описывает механизм пов...

1996ChenHH_LeeMC

     Аннотация статьи Chen HH, Li AF, Li KC, Wu JJ, Chen TS, Lee MC. Adaptations of ligamentum teres in ischemic necrosis of human femoral head (Адаптация круглой связки при ишемическом некрозе головки бедренной кости человека, 1996). Авторы исследуют прочность ligamentum capitis femoris (LCF) при аваскулярном некрозе и переломе шейки бедр енной кости. Оригинал на английском языке доступен по ссылке: 1996ChenHH_LeeMC . Аннотация О биомеханических свойствах круглой связки человека известно немного. Для более полного изучения круглой связки были измерены её размеры и механические свойства в 22 случаях острого перелома шейки бедренной кости и в 21 случае ишемического некроза головки бедренной кости. Образцы сначала были предварительно подготовлены, а затем нагружены до разрушения на испытательной машине с высокой скоростью деформации 100% с(-1). Группа с ишемическим некрозом имела значительно больший объём (3,09 ± 1,81 мл против 1,30 ± 0,62 мл) и площадь поперечного сечения ...