К основному контенту

НОВЫЕ ПУБЛИКАЦИИ

  Н ОВЫЕ ПУБЛИКАЦИИ РЕСУРСА      04 .10.2025 0cent.4Q158.1-2 .   Фрагмент ы c витка Мертвого моря, ранее содержавшего текст 32-й главы книги Берешит с упоминанием LCF . 02 .10.2025 1260Trebizond.  Фреска. Изображение обстоятельств и механизма травмы LCF.  18c.Augsburg. Картина. И зображение обстоятельств и механизма травмы LCF.  1923KubinA.  Рисунок. Изображение обстоятельств и механизма травмы LCF.  17c.Carmen_de_Puebla.  Фр еска . Изображение обстоятельств и механизма травмы LCF.  1550CampañaP.   Рисунок. Изображение обстоятельств и механизма травмы LCF.  1802PalmeraniÁ.   Рисунок. Изображение обстоятельств и механизма травмы LCF.  17c.Anonymous.    Рисунок. Изображение обстоятельств и механизма травмы LCF. 01 .10.2025 Публикации о LCF в 2025 году (Сентябрь)   Статьи и книги с упоминанием LCF опубликован ные в се нтябре 2025 года.  30 .07.2025 Создан раздел Г ИСТОЛОГИЯ LCF  ...

Имитация взаимодействия наружных связок и LCF

 

Имитация взаимодействия наружных связок и связки головки бедренной кости 

В предыдущих экспериментах на трехмерной механической модели тазобедренного сустава человека установлено, что вертлужная губа, labrum acetabulare, прижимает головку бедренной кости, caput femoris, к вертлужной впадине, acetabulum, и препятствует разобщению суставных поверхностей. В данной серии экспериментов мы поставили цель изучить, как может повлиять отсутствие вертлужной губы, labrum acetabulare, на функцию тазобедренного сустава, articulatio coxae, при наличии всех связок. Для реализации поставленной цели мы собрали механическую модель тазобедренного сустава человека без аналога вертлужной губы, но с аналогами всех наружных связок (аналог круговой зоны, аналог лобково-бедренной связки, аналог горизонтальной части подвздошно-бедренной связки, аналог вертикальной части подвздошно-бедренной связки, аналог седалищно-бедренной связки) и аналогом связки головки бедренной кости, проксимальный конец которого пропускался через центральное отверстие в фасонной выточке модели вертлужной впадины (Рис. 1).  


Рис. 1. Трехмерная механическая модель тазобедренного сустава человека с аналогами всех связок без аналога вертлужной губы, воспроизводящая правый тазобедренный сустав; вверху – вид спереди, внизу – вид сзади. 

 

Значимой особенностью настоящей сборки являлось более надежное соединение аналогов наружных связок с тазовой и бедренной частью модели. Гибкие элементы не привязывались, а прикреплялись специальными зажимами. Означенное существенно уменьшило удлинение аналогов наружных связок под нагрузкой. Это отразилось на ориентации тазовой части модели, после подвешивания груза. Кроме этого, длина аналогов связок стала более управляемой.

Длина аналога связки головки бедренной кости, расположенного в фасонной выточке, выбиралась таким образом, чтобы при максимальном наклоне тазовой части вниз в медиальную сторону он не ущемлялся. В обсуждаемом варианте модели аналог связки головки бедренной кости имел наименьшую длину (Рис. 2).

a

b
 
c

d
Рис. 2. Трехмерная механическая модель тазобедренного сустава человека с аналогами всех связок, воспроизводящая правый тазобедренный сустав; 
a – вид спереди, b – вид с латеральной стороны, c – вид с медиальной стороны, d – вид сверху.

  

Длина аналогов связок была такая же, как и в серии экспериментов, при наличии в модели аналога вертлужной губы. С целью снижения трения в шарнире модели на поверхность головки мы наносили смазку.

Отмечена высокая устойчивость тазовой части модели на головке бедренной части модели. Тазовая часть могла свободно поворачиваться относительно головки бедренной части модели. При этом она имела тенденцию к наклону вниз в медиальную сторону и назад в сагиттальной плоскости, что имитировало приведение и разгибание (Рис. 3).

Рис. 3. Трехмерная механическая модель тазобедренного сустава человека с аналогами всех связок без аналога вертлужной губы, воспроизводящая правый тазобедренный сустав (максимальное приведение, вид спереди); угол наклона модели вертлужной впадины измеряется специально изготовленным угломером и составил 55°.


Экспериментально установлено, что отсутствие аналога вертлужной губы практически никак не повлияло на амплитуду вращательных движений в шарнире модели. Отмечено, что поступательное смещение тазовой части модели в медиальном направлении стало легче по причине отсутствия эффекта прижатия модели вертлужной впадины к головке бедренной части модели. Вращательные движения совершались свободнее, так как исключалось трение аналога вертлужной губы и головки бедренной части модели.

Удовлетворительно воспроизводились эффект автооведения и эффект автолатерализации. При имитации сгибания увеличивался угол приведения. Аналоги связок стопорили шарнир сагиттальной и фронтальной плоскости при воспроизведении приведения и разгибания. Одновременно тазовая часть стабилизировалась в горизонтальной плоскости, а возможность смещения тазовой части модели в медиальном направлении ограничивалась.

Затем для имитации действия веса тела в ортостатической позе с опорой на одну ногу нагрузка массой 1 кг подвешивалась к крайнему отверстию кронштейна грузовой планки тазовой части модели (Рис. 4). 


 
Рис. 4. Трехмерная механическая модель тазобедренного сустава человека с аналогами наружных связок без аналога вертлужной губы, воспроизводящая положение общего центра масс тела в одноопорной ортостатической позе медиальнее, позади и выше центра опорного тазобедренного сустава (действует нагрузка 1 кг); вверху – вид спереди, в центре – вид спереди с медиальной стороны, внизу – вид с медиальной стороны.


После подвешивания нагрузки тазовая часть модели отклонялась вниз, в медиальную сторону во фронтальной плоскости, что воспроизводило приведение. В сагиттальной плоскости тазовая часть модели наклонялась назад, что имитировало разгибание. В горизонтальной плоскости в шарнире модели автоматически возникало положение супинации. При этом тазовая часть несколько поворачивалась назад в горизонтальной плоскости. Указанное было обусловлено поворотом тазовой части назад в сагиттальной плоскости, а также связана с длиной натянутых аналогов наружных связок.

Таким образом, под влиянием подвешенной нагрузки тазовая часть автоматический занимала позицию, при которой в шарнире модели наблюдалось разгибание, приведение и супинация. Поступательного смещения в шарнире не отмечалось, а разобщения модели вертлужной впадины и головки бедренной части модели не происходило. На данном варианте модели с нагрузкой удовлетворительно воспроизводились эффекты: авторотации, автостабилизации и автолатерализации, а также стопорение шарнира модели во фронтальной плоскости при имитации приведения. 

С целью дальнейшего изучения взаимодействия отводящей группы мышц и всех связок без вертлужной губы вышеописанная модель дополнена аналогом отводящей группы мышц. Перед его присоединением тазовой части модели придавалось положение, при котором планка, воспроизводящая крыло подвздошной кости, ala ossis ilii, располагалась во фронтальной плоскости и обращена латерально-вверх. Без постороннего вмешательства тазовая часть модели наклонялась вниз в медиальном направлении и стремилась повернуться в сагиттальной плоскости вперед или назад. Для стабилизации тазовой части модели крайнее отверстие планки, имитирующей крыло подвздошной кости, ala ossis ilii, соединялось аналогом отводящей группы мышц с верхним отверстием планки, воспроизводящей большой вертел бедренной кости, trochanter major (Рис. 5). 

Рис. 5. Трехмерная механическая модель тазобедренного сустава человека с аналогами всех связок и аналогом отводящей группы мышц без аналога вертлужной губы (вид спереди).

 

Дополнение модели аналогом отводящей группы мышц повысило стабильность тазовой части модели на головке бедренной части модели. Отведение, сгибание, пронацию и супинацию аналог отводящей группы мышц не ограничивал. При воспроизведении поступательного смещения тазовой части в медиальном направлении динамометр аналога отводящей группы мышц регистрировал появление усилия. Означенное засвидетельствовало участие аналога отводящей группы мышц в ограничении поступательных движений.

Затем для имитации действия веса тела в одноопорной ортостатической позе к кронштейну грузовой планки тазовой части модели подвешивалась нагрузка массой 1 и 2 кг (Рис. 6). 

a
b
c

d
Рис. 6. Трехмерная механическая модель тазобедренного сустава человека с аналогами связок, аналогом отводящей группы мышц без аналога вертлужной губы, воспроизводящая положение общего центра масс тела в одноопорной ортостатической позе медиальнее, позади и выше центра опорного тазобедренного сустава (действует нагрузка 1 кг); 
a – вид спереди, b – вид сзади, c – вид спереди с медиальной стороны, d – вид строго с медиальной стороны.

Нагрузка приводила систему в движение: тазовая часть модели отклонялась назад в сагиттальной плоскости, вниз в медиальную сторону во фронтальной плоскости и несколько поворачивалась назад в горизонтальной плоскости. Динамометр аналога отводящей группы мышц не регистрировал никакого усилия при действии нагрузки 1 и 2 кг. В шарнире модели спонтанно воспроизводилось: разгибание, супинация и приведение. После стабилизации модели отмечено, что натягивались: аналог лобково-бедренной связки, аналог вертикальной части подвздошно-бедренной связки, аналог седалищно-бедренной связки, аналога круговой зоны и аналог связки головки бедренной кости. Значимого натяжения аналога горизонтальной части подвздошно-бедренной связки не наблюдалось. Движения во фронтальной плоскости шунтировались аналогами связок. Это объясняло отсутствие изменений в показаниях динамометра аналога отводящей группы мышц. Тазовая часть модели сохраняла стабильность во всех плоскостях без тенденции к разобщению пары трения шарнира.

Опыты продемонстрировали, что в отсутствие вертлужной губы, labrum acetabulare, связки могут спонтанно стабилизировать тазобедренный сустав, articulatio coxae, во всех трех плоскостях. Мы полагаем, что данное явление наблюдается при локализации общего центра масс тела медиальнее, позади и выше центра опорного тазобедренного сустава, articulatio coxae. Видимым проявлением натяжения его связочного аппарата является наклон таза вниз, pelvis, в медиальную сторону и назад, а также приведение в тазобедренном суставе, articulatio coxae.

Смотри также:

Конструкция трехмерной механической модели тазобедренного сустава

Имитация взаимодействия суставных поверхностей 

Имитация функции отводящей группы мышц 

Воспроизведение функции LCF

Имитация взаимодействия отводящей группы мышц и LCF  

Имитация взаимодействия LCF с отводящей группой мышц разной длины  

Имитация функции отводящей группы мышц в отсутствии LCF 

Имитация взаимодействия вертлужной губы и LCF

Имитация нормальной длины LCF  

Имитация действия веса тела при нормальной длине LCF  

Взаимодействие LCF нормальной длины и вертлужной губы  

Имитация удлиненной LCF   

Взаимодействие удлиненной LCF и вертлужной губы 

Имитация патологически удлиненной LCF

Взаимодействие патологически удлиненной LCF и вертлужной губы  

Имитация функции наружных связок 

Имитация взаимодействия всех связок, вертлужной губы и отводящей группы мышц 

Имитация действия веса тела при наличии всех связок и вертлужной губы 

Имитация действия веса тела при наличии всех связок, вертлужной губы и отводящей группы мышц 

Взаимодействие наружных связок, вертлужной губы и отводящей группы мышц при нормальной длине LCF   

Взаимодействие вертлужной губы, наружных связок, отводящей группы мышц с удлиненной LCF 

Взаимодействие вертлужной губы, наружных связок, отводящей группы мышц с патологически удлиненной LCF

                                                                     

Критика

Описанная конструкция модели имитировала естественный тазобедренный сустав и содержала аналоги всех связок, вертлужной губы и отводящей группы мышц. Нами воспроизводилось действие веса тела приблизительно также, как в одноопорном ортостатическом положении. Конструкция позволяла изменять положение нагрузки как во фронтальной, так и сагиттальной плоскости. Причем нагрузка прикладывалась к области, приблизительно совпадающей с реальным положением общего центра масс тела. Во второй генерации механической модели нами воспроизведено приведение бедренной кости и ее поворот вперед в горизонтальной плоскости. Главным недочетом конструкции, по нашему мнению, являлось недостаточная упругость аналогов связок. В описанной конструкции частично удалось стабилизировать длину аналогов связок путем модернизации способа их крепления. Однако растяжимость гибких элементов была избыточной особенно при действии нагрузок 2 и 3 кг.


Примечания

Впервые эксперименты на трехмерной механической модели тазобедренного сустава второй генерации нами описаны в статье Роль связки головки бедренной кости в поддержании разных типов вертикальной позы (2008). Полную версия представленного выше экспериментального материала мы опубликовали в двенадцатой главе третьего тома монографии с юмором названой «Биомеханика пингвинов» (2018) [academia.edu]. Данная работа написана для личного использования и узкого круга лиц. В книге собраны, систематизированы и проанализированы результаты 25-ти лет изучения ligamentum capitis femoris и смежных тем. 
Расшифровку цитированных источников смотри в Списке литературы.

Первоисточник

Архипов СВ. Биомеханика пингвинов: заметки к вопросу о причинах ковыляющей походки и перспективах ее ремоделирования во имя обретения грациозности, сочиненные врачом, к.м.н. Сергеем Васильевичем Архиповым, в бытность им с 1992-го по 2017-й год хирургом и травматологом-ортопедом, по вдохновению в 1991-ом году его сестрою Еленой Васильевной, со светлой любовью к ней и благодарностью! Манускрипт в 5 томах. Т. 3. Главы 12-16. Напечатано Автором во граде Королев при попечении его супруги Людмилы Николаевны, ММXVIII A.D. [2018], bonum factum! [на благо и счастье], 518 с. [academia.edu]


Ключевые слова

ligamentum capitis femorisligamentum teres, связка головки бедра, функция, наружные связки, эксперимент, механическая модель, отводящая группа мышц

 СОДЕРЖАНИЕ РЕСУРСА

Эксперименты и наблюдения

1991-2021АрхиповСВ


Популярные статьи

0cent.4Q158.1-2

  Содержание [i]   Аннотация [ii]   Оригинал текста [iii]   Перевод [iv]   Источник и ссылки [v]   Примечания [vi]   Автор и принадлежность [vii]   Ключевые слова [i]   Аннотация Фрагменты 1-2 c витка Мертвого моря 4 Q 158.1-2 , ранее содержавшего часть 32-й главы книги Берешит с упоминанием ligamentum capitis femoris ( LCF ). Нами осуществлен перевод реконструированного текста, который произвела M .М. Zahn (2009). Перевод на английский доступен по ссылке: 0 cent .4 Q 158.1-2 . [ii]   Оригинал текста Фотокопия Свиток Мертвого моря 4Q158, фрагменты 1-2 (Plate 138, Frag. 4 B-358482), материал – пергамент, текст – иврит, период – Иродианский. С нимок с экрана оригинала из коллекции The Leon Levy dead sea scrolls Digital Library collection; © 2025 Israel Antiquities Authority,   deadseascrolls.org.il   (Добросовестное использование с целью критики, изучения и сравнения; настройка резкости, коррекция цветопередачи, обозначения ...

ПРОЗА О БИБЛЕЙСКОЙ ТРАВМЕ LCF

  Нестихотворные произведения, напоминающие об эпизоде библейской травмы  ligamentum capitis femoris . Тематический Интернет-журнал О круглой связке бедра Апрель, 2025 проза О Библейской травмЕ ligamentum capitis femoris С.В. Архипов Древнейшее описание обстоятельств и механизма травмы ligamentum capitis femoris (LCF) содержится в книге «Берешит» (Бырэйшит), что значит «В начале». Произведение является первой частью «Торы» (Закон, Учение), ключевого текста иудаизма. В разделе «Ваишлах» мы читаем: «23 И встал он в ту ночь, и взял двух жен своих и двух рабынь своих, и одиннадцать детей своих, и перешел через Яббок вброд. 24 И взял их, и перевел через поток, и перевел то, что у него. 25 И остался Яаков один. И боролся человек с ним до восхода зари, 26 И увидел, что не одолевает его, и коснулся сустава бедра его, и вывихнулся сустав бедра Яакова, когда он боролся с ним. 27 И сказал: отпусти меня, ибо взошла заря. Но он сказал: не отпущу тебя, пока не благословишь меня. 28 И сказ...

1869BigelowHJ

  Фрагменты из книги Bigelow HJ . The mechanism of dislocation and fracture of the hip ( Механизм вывиха и перелома бедра , 1869). Автор обсуждает разрыв ligamentum capitis femoris ( LCF ) при вывихах бедра. Оригинал на английском доступен по ссылке: 1869BigelowHJ . Цитата, стр. 10. Весной 1861 года, когда мне пришлось обнажить сустав, вывих которого был предметом лекции, я был приятно удивлен, наблюдая простое действие связки, — простоту, которую подтвердил последующий опыт, и которая поразительно объясняет явления, наблюдаемые у живого субъекта (1). Вывихнутый сустав, как упоминалось, при осмотре показал следующие признаки. 1. Большое повреждение мышц вокруг сустава. 2. Разрыв круглой связки. 3. Разрыв внутренней, внешней и нижней частей капсулы. 4. Передняя и верхняя части капсулы не повреждены и представляют собой прочную фиброзную полосу, веерообразную и раздвоенную. Цитата, стр. 18. Рис. 1. — Y-связка, изображение показывающее ее внутренние и внешние пучки. Первая известн...

Рассуждение о морфомеханике. 6.5.7 Биоиндукция и ее скорость

  6.5.7 Биоиндукция и ее скорость Биологические процессы не начинаются и не заканчиваются мгновенно. Для их развития необходимо какое-то время, так же как и для полного прекращения. Биологические процессы находятся в непосредственной зависимости от знака и величины биоэффективных напряжений. Со всей определенностью можно утверждать, что величина биоэффективного напряжения влияет на длительность течения биологических процессов. Чем больше величина биоэффективных напряжений, тем дольше продолжаются биологические процессы и выше их интенсивность, тем больше времени требуется на то, чтоб нивелировать разницу между фактическими и оптимальными среднесуточными напряжениями. Величина биоэффективных напряжений не постоянна и изменяется под влиянием биологических процессов и внешних факторов. Вместе с тем появление биоэффективного напряжения не происходит мгновенно. Изначально оно отсутствует, при совпадении фактического и оптимального среднесуточного напряжения. Вследствие некого возд...

Новая механика тазобедренного сустава

  Новая механика тазобедренного сустава Архипов-Балтийский С.В. Связка головки бедра – постоянный элемент опорно-двигательной системы. Она располагается в ацетабулярной части тазобедренного сустава и соединяет головку бедренной кости с дном ямки вертлужной впадины. Несмотря на исключительный объем накопленной информации о тазобедренном суставе, вопрос о функции связки головки бедра остается открытым до сих пор [3, 6]. Связке головки бедра приписываются как механические, так и немеханические функции [1, 4, 6], однако единства во мнениях не наблюдается. С нашей точки зрения, связка головки бедра исключительно важна для функционирования тазобедренного сустава [2]. Разрешение данного вопроса позволяет в корне пересмотреть механику тазобедренного сустава, открывает пути для создания более совершенной его математической модели, как в норме, так и при патологии. С целью уточнения механики тазобедренного сустава создана его трехмерная модель оригинальной конструкции. Основой бедренно...