К основному контенту

НОВЫЕ ПУБЛИКАЦИИ

  Н ОВЫЕ ПУБЛИКАЦИИ РЕСУРСА     17 .11.2025 2025 ChenJH _ AcklandD .   Авторы в эксперименте доказали роль  LCF  в разгрузке верхнего сектора вертлужной впадины и головки бедра.  2025 SrinivasanS _ SakthivelS . Перевод статьи, посвященной морфологии LCF у населения Индии.   2024 GillHS . Для уточнения роли LCF автор рекомендует сочетание экспериментальных исследований с компьютерным моделированием.   16 .11.2025 АрхиповСВ. К вопросу о прочности LCF .  2024StetzelbergerVM_TannastM.     Авторы обнаружили низкую прочность LCF при фемороацетабулярном импинджменте .  1996 ChenHH _ LeeMC . Авторы исследуют прочность LCF при аваскулярном некрозе и переломе шейки бедренной кости.  2025 ChenJH _ AcklandD . Авторы в эксперименте доказали роль LCF  в разгрузке верхнего сектора вертлужной впадины и головки бедра. 15 .11.2025 2002МалаховОА_КосоваИА.   Авторами показано, что двойное контрастирование тазо...

Имитация функции отводящей группы мышц

 


Имитация функции отводящей группы мышц 

С целью дальнейшего изучения биомеханики тазобедренного сустава, articulatio coxae, трехмерную механическую модель тазобедренного сустава человека второй генерации мы дополнили аналогом отводящей группы мышц и воспроизвели нагрузку весом тела. Аналогом отводящей группы мышц явился бытовой динамометр – безмен пружинный циферблатный БПЦ-10-01, ТУ РБ 02566668, 019-94, выпущенный Минским заводом «Эталон» (Республика Беларусь). В процессе экспериментальных исследований он дополнялся элементами крепления: проволочными кольцами и крючками различной длины (Рис. 1). 

Рис. 1. Бытовой динамометр – безмен пружинный циферблатный БПЦ-10-01, ТУ РБ 02566668, 019-94, использованный для воспроизведения отводящей группы мышц.

Мы провели серию опытов с целью уточнения функции и значения отводящей группы мышц, прежде всего для стабильности тазобедренного сустава, articulatio coxae, в одноопорной ортостатической позе и одноопорном периоде шага. Трехмерная механическая модель правого тазобедренного сустава человека дополнена динамометром с элементами крепления, который по нашему замыслу явился аналогом отводящей группы мышц. Динамометр БПЦ-10-01 был рассчитан на максимальную нагрузку 10 кг и имел цену деления 0.1 кг. В качестве элементов крепления, соединяющих динамометр с частями модели, использовались специально выполненные крючки и кольца разных размеров. Это позволяло изменять общую длину аналога отводящей группы мышц.

В экспериментах воспроизводилась длина отводящей группы мышц 163 мм и 153 мм. Означенное имитировало большее либо меньшее сокращение отводящей группы мышц. С целью имитации синовиальной жидкости в шарнире на поверхность головки бедренной части модели и ответную ей поверхность модели вертлужной впадины посредством шприца наносилось масло смазочное бытовое. Действие массы тела воспроизводилось подвешиванием гирь массой 1, 2 и 3 кг непосредственно к крайнему отверстию грузовой планки тазовой части модели. При этом достигалась нагрузка модели силами, действующими во фронтальной плоскости, включающей центр шарнира и общий центр масс тазовой части. Указанное имитировало нагрузку тазобедренного сустава, articulatio coxae, при расположении общего центра масс тела в одной фронтальной плоскости.

Установленной на головку бедренной части модели тазовой части придавалось исходное положение, в котором она имела наклон вниз и наружу равный 48°. Затем обе части модели соединялись динамометром – аналогом отводящей группы мышц через специально подобранные элементы крепления (Рис. 2).

Рис. 2. Моделирование функции отводящей группы мышц на трехмерной механической модели тазобедренного сустава человека (вид спереди); модель без нагрузки.
  

В первом варианте эксперимента длина аналога отводящей группы мышц составила 163 мм. За счет силы упругости пружины тазовая часть модели удерживалась от приведения и опрокидывания вниз во фронтальной плоскости. Измерительное устройство динамометра регистрировало нагрузку 0.1 кг. Усилие генерировала масса тазовой части модели.

Устойчивость в сагиттальной плоскости достигалась отвесным расположением планок, имитирующих крыло подвздошной кости, ala ossis ilii. Силы, действующие на тазовую часть модели, в горизонтальной плоскости отсутствовали. Пружина динамометра стабилизировала систему только во фронтальной плоскости. В сагиттальной и горизонтальной плоскости модель легко выводилась из равновесия, вплоть до разобщения шарнира и падения тазовой части вниз. При воспроизведении продольного медиального смещения тазовой части модели динамометр, имитирующий отводящую группу мышц, участвовал в ограничении указанного движения. Его пружина растягивалась, а измерительное устройство регистрировало появляющуюся силу. Аналог отводящей группы мышц ограничивал приведение, супинацию, пронацию, сгибание и разгибание в шарнире модели. При воспроизведении указанных движений пружина динамометра растягивалась, а динамометр регистрировал появляющееся усилие.

С целью моделирования действия веса тела в напряженной одноопорной ортостатической позе и в начале одноопорного периоде шага к крайнему отверстию грузовой планки тазовой части модели последовательно подвешивались гири массой 1, 2 и 3 кг (Рис. 3).

Рис. 3. Моделирование функции отводящей группы мышц на трехмерной механической модели тазобедренного сустава человека (вид спереди); подвешена нагрузка массой 1 кг к крайнему отверстию грузовой планки (воспроизведение нагрузки модели при расположении общего центра масс в одной фронтальной плоскости с опорным тазобедренным суставом, articulatio coxae).

 

Измерения на модели показали, что плечи противодействующих сил соотносились как 1.9:1. Данные, полученные при нагрузке модели, приведены в таблице. Во втором варианте данного эксперимента использован укороченный элемент аналог отводящей группы мышц длиной 153 мм, что воспроизводило большее напряжение отводящей группы мышц. При этом исходное отклонение тазовой части кнаружи составило 40°. С целью моделирования действия веса тела в напряженной одноопорной ортостатической позе и в начале одноопорного периоде шага при большем напряжении отводящей группы мышц к крайнему отверстию грузовой планки тазовой части модели последовательно подвешивались гири массой 1, 2 и 3 кг. Данные, полученные при нагрузке модели, приведены в таблице.

Таблица

Нагрузка модели с аналогом отводящей группы мышц разной длины

Нагрузка

Длина аналога отводящей
группы мышц 163 мм
Длина аналога отводящей
группы мышц 153 мм

латеральный наклон тазовой части 

показания
динамометра
(кг)

латеральный наклон тазовой части 

показания динамометра
(кг)

1.0 кг

51°

1.6±0.1

41°

1.2±0.1

2.0 кг

53°

3.3±0.1

43°

2.4±0.1

3.0 кг

56°

4.9±0.1

46°

4.2±0.1

 

В обоих вариантах эксперимента под действием груза изменения положения тазовой части модели в сагиттальной и горизонтальной плоскостях не отмечалось.

Известно, что общий центр масс тела человека располагается кзади от тазобедренного сустава, articulatio coxae (Недригайлова О.В., 1967; Корж А.А. и соавт. (1984). В третьем варианте эксперимента мы воспроизвели положение общего центра масс тела человека кзади от опорного тазобедренного сустава, articulatio coxae. Для этого при длине аналога отводящей группы мышц 163 мм и 153 мм, нагрузка подвешивалась к крайнему отверстию кронштейна грузовой планки. При этом в шарнире модели воспроизводилось разгибание и супинация. Не удерживаемая в сагиттальной плоскости тазовая часть модели соскальзывала с головки бедренной части модели и падала вниз. Эксперимент показал, что в отсутствии связок тазобедренного сустава, articulatio coxae, и иных мышц, кроме отводящих, для поддержания устойчивого равновесия тела необходимо, чтоб общий центр масс тела располагался в одной плоскости с опорным тазобедренным суставом, articulatio coxae. 

Смотри также:

Конструкция трехмерной механической модели тазобедренного сустава

Имитация взаимодействия суставных поверхностей 

                                                                     

Критика

Описанная конструкция модели имитировала естественный тазобедренный сустав и содержала аналоги всех связок, вертлужной губы и отводящей группы мышц. Нами воспроизводилось действие веса тела приблизительно также, как в одноопорном ортостатическом положении. Конструкция позволяла изменять положение нагрузки как во фронтальной, так и сагиттальной плоскости. Причем нагрузка прикладывалась к области, приблизительно совпадающей с реальным положением общего центра масс тела. Во второй генерации механической модели нами воспроизведено приведение бедренной кости и ее поворот вперед в горизонтальной плоскости. Главным недочетом описанной конструкции, по нашему мнению, являлось недостаточная упругость аналогов связок. Несомненно, что эластичность использованного аналога вертлужной губы также не в полной мере соответствовала нативному элементу.


Примечания

Впервые эксперименты на трехмерной механической модели тазобедренного сустава второй генерации нами описаны в статье Роль связки головки бедренной кости в поддержании разных типов вертикальной позы (2008). Полную версия представленного выше экспериментального материала мы опубликовали в двенадцатой главе третьего тома монографии с юмором названой «Биомеханика пингвинов» (2018) [academia.edu]. Данная работа написана для личного использования и узкого круга лиц. В книге собраны, систематизированы и проанализированы результаты 25-ти лет изучения ligamentum capitis femoris и смежных тем. 
Расшифровку цитированных источников смотри в Списке литературы.

Первоисточник

Архипов СВ. Биомеханика пингвинов: заметки к вопросу о причинах ковыляющей походки и перспективах ее ремоделирования во имя обретения грациозности, сочиненные врачом, к.м.н. Сергеем Васильевичем Архиповым, в бытность им с 1992-го по 2017-й год хирургом и травматологом-ортопедом, по вдохновению в 1991-ом году его сестрою Еленой Васильевной, со светлой любовью к ней и благодарностью! Манускрипт в 5 томах. Т. 3. Главы 12-16. Напечатано Автором во граде Королев при попечении его супруги Людмилы Николаевны, ММXVIII A.D. [2018], bonum factum! [на благо и счастье], 518 с. [academia.edu]


Ключевые слова

ligamentum capitis femorisligamentum teres, связка головки бедра, функция, наружные связки, вертлужная губа, эксперимент, механическая модель, отводящая группа мышц, синовия 

 СОДЕРЖАНИЕ РЕСУРСА

Эксперименты и наблюдения

1991-2021АрхиповСВ


Популярные статьи

Каталог тестов патологии LCF

   каталог тестов патологии ligamentum capitis femoris Архипов С.В.     Содержание [i]   Резюме [ii]   Введение [iii]   Тестирование в положении лежа [iv]   Тестирование в положении стоя [v]   Изучение походки [vi]   Список литературы [vii]   Приложение [i]   Резюме Представлено описание тестов для выявления и дифференциальной диагностики патологии ligamentum capitis femoris ( LCF ). [ii]   Введение Одна из первых работ посвященная диагностике травмы LCF, показала многообразие симптомов: боль в паху, ригидность тазобедренного сустава, иногда длительно существующие минимальные клинические данные или же признаки такие же как при остеоартрите (1997GrayA_VillarRN). По прошествии более десятилетия исследователи констатировали: «к сожалению, не существует специального теста для обнаружения разрывов LCF», известные на то время признаки являлись неспецифичны и наблюдались также при другой внутрисуставной патологии тазобедренн...

К вопросу о прочности LCF

  К  вопросу о прочности   ligamentum   capitis   femoris Архипов С.В.     Содержание [i]   Аннотация [ii]   О прочности LCF [iii]   Список литературы [iv]   Приложение [i]   Аннотация Наше мнение по поводу низкой прочности  ligamentum   capitis   femoris  ( LCF ), согласно исследованию  Stetzelberger   V . M . и соавт. (2024). [ii]   О прочности LCF Статья  Stetzelberger   V . M . и соавт . « Насколько прочна круглая связка бедра? Биомеханический анализ»  (2024), примечательна строгой методологией и глубиной изучения литературы. В полученных авторами результатах наше внимание привлекла низкая  предельная нагрузка до разрушения 126±92 Н у  LCF   ( 2024StetzelbergerVM_TannastM ).  Усредненно это эквивалентно 13 кг. При определении прочности LCF, полученной у группы лиц неустановленного возраста с переломом шейки бедренной кости, другая команда исследователей о...

Кто и когда впервые описал повреждение LCF? Часть 1

  Кто и когда впервые описал повреждение   ligamentum capitis femoris?  Часть 1. Архипов С.В.   Содержание Часть 1 [i]   Аннотация [ii]   Введение [iii]   Доисторический период Часть 2 [iv]   Исторический период [v]   Вмешательства в текст Часть 3 [vi]   Египетский врач Часть 4 [vii]   Азиатский прорицатель [viii]   Хронологическая таблица Часть 5 [ix]   Заключение [x]   Список литературы [xi]   Приложение [i]   Аннотация Книга «Берешит», в переводе именуемая «Бытие», является одним из древнейших художественных текстов. Кроме тенденциозно трансформированных легенд и вымысла, она содержит важные медицинские и естественнонаучные факты. Произведение написано на севере Египта вскоре после минойского извержения, вероятно в конце 17-го века до современной эры. Над протографом работал азиатский прорицатель, ставший чиновником и египетский врач-энциклопедист. Последний впервые в истории описывает механизм повреждени...

Кто и когда впервые описал повреждение LCF? Часть 5

  Кто и когда впервые описал повреждение   ligamentum capitis femoris?  Часть 5. Архипов С.В.     Содержание Часть 1 [i]   Аннотация [ii]   Введение [iii]   Доисторический период Часть 2 [iv]   Исторический период [v]   Вмешательства в текст Часть 3 [vi]   Египетский врач Часть 4 [vii]   Азиатский прорицатель [viii]   Хронологическая таблица Часть 5 [ix]   Заключение [x]   Список литературы [xi]   Приложение [i]   Аннотация Книга «Берешит», в переводе именуемая «Бытие», является одним из древнейших художественных текстов. Кроме тенденциозно трансформированных легенд и вымысла, она содержит важные медицинские и естественнонаучные факты. Произведение написано на севере Египта вскоре после минойского извержения, вероятно в конце 17-го века до современной эры. Над протографом работал азиатский прорицатель, ставший чиновником и египетский врач-энциклопедист. Последний впервые в истории описывает механизм пов...

1996ChenHH_LeeMC

     Аннотация статьи Chen HH, Li AF, Li KC, Wu JJ, Chen TS, Lee MC. Adaptations of ligamentum teres in ischemic necrosis of human femoral head (Адаптация круглой связки при ишемическом некрозе головки бедренной кости человека, 1996). Авторы исследуют прочность ligamentum capitis femoris (LCF) при аваскулярном некрозе и переломе шейки бедр енной кости. Оригинал на английском языке доступен по ссылке: 1996ChenHH_LeeMC . Аннотация О биомеханических свойствах круглой связки человека известно немного. Для более полного изучения круглой связки были измерены её размеры и механические свойства в 22 случаях острого перелома шейки бедренной кости и в 21 случае ишемического некроза головки бедренной кости. Образцы сначала были предварительно подготовлены, а затем нагружены до разрушения на испытательной машине с высокой скоростью деформации 100% с(-1). Группа с ишемическим некрозом имела значительно больший объём (3,09 ± 1,81 мл против 1,30 ± 0,62 мл) и площадь поперечного сечения ...