К основному контенту

НОВЫЕ ПУБЛИКАЦИИ

  Н ОВЫЕ ПУБЛИКАЦИИ РЕСУРСА      05 .08.2025 Архипов СВ.  LCF при остеоартрите тазобедренного сустава. Обзор , 2025. 03 .08.2025 Архипов СВ.  LCF при врожденном вывихе бедра. Обзор , 2025. 02 .08.2025 1802CamperP. Автор об суждает отсутствие и неизвестную роль LCF  у слона и некоторых обезьян.  Архипов СВ. LCF при артрогрипозе. Обзор ,  2025.  Архипов СВ. LCF при асептическом некрозе. Обзор ,  2025.   01 .08.2025 Публикации о LCF в 2025 году (Июль)   Статьи и книги с упоминанием LCF опубликованные в июле 2025 года.  1803CamperP. Автор обсуждает отсутствие и неизвестную роль LCF  у орангутанга, слона, ленивца.  1888 BuissonGPE . Диссертация, посв ященная изучению функции LCF .  1824 MeckelJF . Автор отмечает отсутствие LCF  у орангутангов, трёхпалых ленивцев и черепах.  1898 LeiseringAGT.   Автор описывает LCF  у лошади и добавочную связку . 31 .07.2025 Инте рнет-журнал "О КР...

Имитация функции отводящей группы мышц

 


Имитация функции отводящей группы мышц 

С целью дальнейшего изучения биомеханики тазобедренного сустава, articulatio coxae, трехмерную механическую модель тазобедренного сустава человека второй генерации мы дополнили аналогом отводящей группы мышц и воспроизвели нагрузку весом тела. Аналогом отводящей группы мышц явился бытовой динамометр – безмен пружинный циферблатный БПЦ-10-01, ТУ РБ 02566668, 019-94, выпущенный Минским заводом «Эталон» (Республика Беларусь). В процессе экспериментальных исследований он дополнялся элементами крепления: проволочными кольцами и крючками различной длины (Рис. 1). 

Рис. 1. Бытовой динамометр – безмен пружинный циферблатный БПЦ-10-01, ТУ РБ 02566668, 019-94, использованный для воспроизведения отводящей группы мышц.

Мы провели серию опытов с целью уточнения функции и значения отводящей группы мышц, прежде всего для стабильности тазобедренного сустава, articulatio coxae, в одноопорной ортостатической позе и одноопорном периоде шага. Трехмерная механическая модель правого тазобедренного сустава человека дополнена динамометром с элементами крепления, который по нашему замыслу явился аналогом отводящей группы мышц. Динамометр БПЦ-10-01 был рассчитан на максимальную нагрузку 10 кг и имел цену деления 0.1 кг. В качестве элементов крепления, соединяющих динамометр с частями модели, использовались специально выполненные крючки и кольца разных размеров. Это позволяло изменять общую длину аналога отводящей группы мышц.

В экспериментах воспроизводилась длина отводящей группы мышц 163 мм и 153 мм. Означенное имитировало большее либо меньшее сокращение отводящей группы мышц. С целью имитации синовиальной жидкости в шарнире на поверхность головки бедренной части модели и ответную ей поверхность модели вертлужной впадины посредством шприца наносилось масло смазочное бытовое. Действие массы тела воспроизводилось подвешиванием гирь массой 1, 2 и 3 кг непосредственно к крайнему отверстию грузовой планки тазовой части модели. При этом достигалась нагрузка модели силами, действующими во фронтальной плоскости, включающей центр шарнира и общий центр масс тазовой части. Указанное имитировало нагрузку тазобедренного сустава, articulatio coxae, при расположении общего центра масс тела в одной фронтальной плоскости.

Установленной на головку бедренной части модели тазовой части придавалось исходное положение, в котором она имела наклон вниз и наружу равный 48°. Затем обе части модели соединялись динамометром – аналогом отводящей группы мышц через специально подобранные элементы крепления (Рис. 2).

Рис. 2. Моделирование функции отводящей группы мышц на трехмерной механической модели тазобедренного сустава человека (вид спереди); модель без нагрузки.
  

В первом варианте эксперимента длина аналога отводящей группы мышц составила 163 мм. За счет силы упругости пружины тазовая часть модели удерживалась от приведения и опрокидывания вниз во фронтальной плоскости. Измерительное устройство динамометра регистрировало нагрузку 0.1 кг. Усилие генерировала масса тазовой части модели.

Устойчивость в сагиттальной плоскости достигалась отвесным расположением планок, имитирующих крыло подвздошной кости, ala ossis ilii. Силы, действующие на тазовую часть модели, в горизонтальной плоскости отсутствовали. Пружина динамометра стабилизировала систему только во фронтальной плоскости. В сагиттальной и горизонтальной плоскости модель легко выводилась из равновесия, вплоть до разобщения шарнира и падения тазовой части вниз. При воспроизведении продольного медиального смещения тазовой части модели динамометр, имитирующий отводящую группу мышц, участвовал в ограничении указанного движения. Его пружина растягивалась, а измерительное устройство регистрировало появляющуюся силу. Аналог отводящей группы мышц ограничивал приведение, супинацию, пронацию, сгибание и разгибание в шарнире модели. При воспроизведении указанных движений пружина динамометра растягивалась, а динамометр регистрировал появляющееся усилие.

С целью моделирования действия веса тела в напряженной одноопорной ортостатической позе и в начале одноопорного периоде шага к крайнему отверстию грузовой планки тазовой части модели последовательно подвешивались гири массой 1, 2 и 3 кг (Рис. 3).

Рис. 3. Моделирование функции отводящей группы мышц на трехмерной механической модели тазобедренного сустава человека (вид спереди); подвешена нагрузка массой 1 кг к крайнему отверстию грузовой планки (воспроизведение нагрузки модели при расположении общего центра масс в одной фронтальной плоскости с опорным тазобедренным суставом, articulatio coxae).

 

Измерения на модели показали, что плечи противодействующих сил соотносились как 1.9:1. Данные, полученные при нагрузке модели, приведены в таблице. Во втором варианте данного эксперимента использован укороченный элемент аналог отводящей группы мышц длиной 153 мм, что воспроизводило большее напряжение отводящей группы мышц. При этом исходное отклонение тазовой части кнаружи составило 40°. С целью моделирования действия веса тела в напряженной одноопорной ортостатической позе и в начале одноопорного периоде шага при большем напряжении отводящей группы мышц к крайнему отверстию грузовой планки тазовой части модели последовательно подвешивались гири массой 1, 2 и 3 кг. Данные, полученные при нагрузке модели, приведены в таблице.

Таблица

Нагрузка модели с аналогом отводящей группы мышц разной длины

Нагрузка

Длина аналога отводящей
группы мышц 163 мм
Длина аналога отводящей
группы мышц 153 мм

латеральный наклон тазовой части 

показания
динамометра
(кг)

латеральный наклон тазовой части 

показания динамометра
(кг)

1.0 кг

51°

1.6±0.1

41°

1.2±0.1

2.0 кг

53°

3.3±0.1

43°

2.4±0.1

3.0 кг

56°

4.9±0.1

46°

4.2±0.1

 

В обоих вариантах эксперимента под действием груза изменения положения тазовой части модели в сагиттальной и горизонтальной плоскостях не отмечалось.

Известно, что общий центр масс тела человека располагается кзади от тазобедренного сустава, articulatio coxae (Недригайлова О.В., 1967; Корж А.А. и соавт. (1984). В третьем варианте эксперимента мы воспроизвели положение общего центра масс тела человека кзади от опорного тазобедренного сустава, articulatio coxae. Для этого при длине аналога отводящей группы мышц 163 мм и 153 мм, нагрузка подвешивалась к крайнему отверстию кронштейна грузовой планки. При этом в шарнире модели воспроизводилось разгибание и супинация. Не удерживаемая в сагиттальной плоскости тазовая часть модели соскальзывала с головки бедренной части модели и падала вниз. Эксперимент показал, что в отсутствии связок тазобедренного сустава, articulatio coxae, и иных мышц, кроме отводящих, для поддержания устойчивого равновесия тела необходимо, чтоб общий центр масс тела располагался в одной плоскости с опорным тазобедренным суставом, articulatio coxae. 

Смотри также:

Конструкция трехмерной механической модели тазобедренного сустава

Имитация взаимодействия суставных поверхностей 

                                                                     

Критика

Описанная конструкция модели имитировала естественный тазобедренный сустав и содержала аналоги всех связок, вертлужной губы и отводящей группы мышц. Нами воспроизводилось действие веса тела приблизительно также, как в одноопорном ортостатическом положении. Конструкция позволяла изменять положение нагрузки как во фронтальной, так и сагиттальной плоскости. Причем нагрузка прикладывалась к области, приблизительно совпадающей с реальным положением общего центра масс тела. Во второй генерации механической модели нами воспроизведено приведение бедренной кости и ее поворот вперед в горизонтальной плоскости. Главным недочетом описанной конструкции, по нашему мнению, являлось недостаточная упругость аналогов связок. Несомненно, что эластичность использованного аналога вертлужной губы также не в полной мере соответствовала нативному элементу.


Примечания

Впервые эксперименты на трехмерной механической модели тазобедренного сустава второй генерации нами описаны в статье Роль связки головки бедренной кости в поддержании разных типов вертикальной позы (2008). Полную версия представленного выше экспериментального материала мы опубликовали в двенадцатой главе третьего тома монографии с юмором названой «Биомеханика пингвинов» (2018) [academia.edu]. Данная работа написана для личного использования и узкого круга лиц. В книге собраны, систематизированы и проанализированы результаты 25-ти лет изучения ligamentum capitis femoris и смежных тем. 
Расшифровку цитированных источников смотри в Списке литературы.

Первоисточник

Архипов СВ. Биомеханика пингвинов: заметки к вопросу о причинах ковыляющей походки и перспективах ее ремоделирования во имя обретения грациозности, сочиненные врачом, к.м.н. Сергеем Васильевичем Архиповым, в бытность им с 1992-го по 2017-й год хирургом и травматологом-ортопедом, по вдохновению в 1991-ом году его сестрою Еленой Васильевной, со светлой любовью к ней и благодарностью! Манускрипт в 5 томах. Т. 3. Главы 12-16. Напечатано Автором во граде Королев при попечении его супруги Людмилы Николаевны, ММXVIII A.D. [2018], bonum factum! [на благо и счастье], 518 с. [academia.edu]


Ключевые слова

ligamentum capitis femorisligamentum teres, связка головки бедра, функция, наружные связки, вертлужная губа, эксперимент, механическая модель, отводящая группа мышц, синовия 

 СОДЕРЖАНИЕ РЕСУРСА

Эксперименты и наблюдения

1991-2021АрхиповСВ


Популярные статьи

СОДЕРЖАНИЕ РЕСУРСА

  LCF –  ключ к грациозной походке, выяснению причин болезней тазобедренного сустава и опровержению мифов о них. Мы представляем перспективное научное знание, необходимое для сбережения здоровья, разработки  имплантов и  новых способов лечения дегенеративно-дистрофических заболеваний тазобедренного сустава. Цель проекта: содействие сохранению нормальной походки и качества жизни, помощь в изучении механики  тазобедренного сустава, разработке эффективных способов лечения его болезней и травм.   СОДЕРЖАНИЕ  РЕСУРСА  БИБЛЕЙСКАЯ ТРАВМА (Художники и скульпторы о повреждении  LCF,   описанном в Библии: картины, скульптуры, иконы…) 1000Jacob&Archangel.  Фреска. Изображение обстоятельств и механизма травмы LCF. 17c.PatelP.  Картина. Изображение обстоятельств и механизма травмы LCF. 17c.OvensJ.  Картина. Изображение обстоятельств и механизма травмы LCF. 1639BreenberghB.  Картина. Изображение о...

ИСТОРИЯ ИЗУЧЕНИЯ ФУНКЦИЙ LCF

  История изучения функций LCF (Каталог обзоров по истории изучения основных функций ligamentum capitis femoris) Детализация функций LCF Функция ограничения движений, присущая LCF. Обзор    Перемешивающая функция LCF. Обзор Опорная функция LCF . Обзор Стабилизирующая функция  LCF . Обзор Чувствительная функция  LCF . Обзор Функция регу лировки внутрисуставного давления, присущая LCF. Обзор   Продуцирующая функция LCF. Обзор Защитная функция LCF. Обзор Функция корректировки движений LCF. Обзор Функция ритмовводителя, присущая LCF. Обзор Функция распределения нагрузки  LCF . Обзор Функция преобразования рычага, присущая  LCF. Обзор Обтурационная функция  LCF.  Обзор Силовая функция LCF. Обзор Эффекты функций  LCF. Обзор Функция преобразования энергии, присущая LCF. Обзор Функция обеспечения конгруэнтности, присущая LCF. Обзор Распределительная функция LCF. Обзор Демпфирующая функция LCF. Обзор Соединительная функция  LCF . О...

Общая классификация патологии LCF

Общая классификация патологии LCF Версия: 20240420 Аннотация Анализ литературных данных и собственные морфологические наблюдения позволили предложить Общую классификацию патологии ligamentum capitis femoris . Введение В России первые попытки классификации патологии связки головки бедренной кости, ligamentum capitis femoris (LCF) были предприняты морфологами. Л.И. Гаевская (1954) различала три типа LCF: : 1) длинные толстые (длина 41–51 мм, толщина 5 мм), 2) короткие тонкие (длина 10–20 мм, толщина 1 мм), 3) длинные небольшой толщины (длиной 43–45 мм, при толщине 3 мм и длинной 28–30 при толщине 4–5 мм). В.В. Кованов, А.А. Травин (1963) выделил три разновидности гистологического строения LCF: 1) с преобладанием рыхлой соединительной ткани; 2) с преобладанием плотной соединительной ткани; 3) с равномерным распределением рыхлой и плотной соединительной ткани. Развитие артроскопической хирургии позволило выявить различные, ранее неописанные виды патологии LCF , что побуд...

Функция регулировки внутрисуставного давления, присущая LCF. Обзор

  Функция регулировки внутрисуставного давления,  присущая  ligamentum capitis femoris.  Обзор Архипов С.В.     Содержание [i]   Резюме [ii]   Введение [iii]   17-й век [iv]   18-й век [v]   19-й век [vi]   20-й век [vii]   21-й век [viii]   Некоторые сомневающиеся [ix]   Отдельные противники [x]   Список литературы [xi]   Приложение [i]   Резюме Представлены мнения о наличии у ligamentum capitis femoris (LCF) функции регулирования давления в тазобедренном суставе. [ii]   Введение В конце 20-го века наш предметный анализ доступных источников информации, показал, что проблема роли LCF в опорно-двигательной системе не решена. Разногласия по столь важному вопросу подвигли заняться собственными научными изысканиями. Параллельно накапливались и анализировались мнения иных авторов. Этот процесс продолжается до сих пор. Здесь мы планируем собрать воедино все значимые цитаты и мысли, касающиеся функц...

Публикации о LCF в 2025 году (Июль)

     Публикации о  LCF   в 2025 году (Июль)   Tekcan, D., Bilgin, G., & Güven, Ş. Evaluation of Risk Factors for Developmental Dysplasia of the Hip.  HAYDARPAŞA NUMUNE MEDICAL JOURNAL ,   65 (2), 99-103.    [i]     jag.journalagent.com   Domb, B. G., & Sabetian, P. W. (2025). Greater Trochanteric Pain Syndrome: Gluteal Tendinopathy, Partial Tear, Complete Tear, Iliotibial Band Syndrome, and Bursitis. In  Orthopaedic Sports Medicine  (pp. 1-17). Springer, Cham.    [ii]    link.springer.com   Kuhns, B. D., Becker, N., Patel, D., Shah, P. P., & Domb, B. G. (2025). Significant Heterogeneity in Existing Literature Limits Both Indication and Outcome Comparability Between Studies Involving Periacetabular Osteotomy For Acetabular Dysplasia With or Without Arthroscopy Despite Improvement for Both: A Systematic Review.  Arthroscopy .   [iii]    arthroscopyjourna...