К основному контенту

НОВЫЕ ПУБЛИКАЦИИ

  Н ОВЫЕ ПУБЛИКАЦИИ РЕСУРСА     17 .11.2025 2025 ChenJH _ AcklandD .   Авторы в эксперименте доказали роль  LCF  в разгрузке верхнего сектора вертлужной впадины и головки бедра.  2025 SrinivasanS _ SakthivelS . Перевод статьи, посвященной морфологии LCF у населения Индии.   2024 GillHS . Для уточнения роли LCF автор рекомендует сочетание экспериментальных исследований с компьютерным моделированием.   16 .11.2025 АрхиповСВ. К вопросу о прочности LCF .  2024StetzelbergerVM_TannastM.     Авторы обнаружили низкую прочность LCF при фемороацетабулярном импинджменте .  1996 ChenHH _ LeeMC . Авторы исследуют прочность LCF при аваскулярном некрозе и переломе шейки бедренной кости.  2025 ChenJH _ AcklandD . Авторы в эксперименте доказали роль LCF  в разгрузке верхнего сектора вертлужной впадины и головки бедра. 15 .11.2025 2002МалаховОА_КосоваИА.   Авторами показано, что двойное контрастирование тазо...

Моделирование функции отводящей группы мышц

 

Моделирование функции отводящей группы мышц

Известные методики моделирования одноопорной ортостатической позы, казалось бы, наглядно доказывают правильность имеющихся представлений о взаимодействии сил, поддерживающих тело в равновесии. Рассматривая силы, действующие во фронтальной плоскости в области тазобедренного сустава, articulatio coxae, обычно принимают в расчет силу тяжести и противодействующую ей силу напряжения группы отводящих мышц. Как показывают эксперименты на механических моделях, их учет вполне достаточен для сохранения равновесия модели (Pauwels F., 1965; Гиммельфарб А.Л., Акбердина Д.Л., 1983; Беленький В.Е., 1962; Martin R.B. et al., 1998).

Известно, что для фиксации сложной кинематической цепи необходимо закрепить связями каждую из имеющихся у нее степеней свободы (Бернштейн Н.А., 1966; Бернштейн Н.А., 1990). Считается, что роль этих связей в опорно-двигательной системе человека исполняют «…мышечные сокращения и внешние силы, из которых наиболее важной является сила тяжести тела» (Корж А.А. и соавт., 1984). По всей видимости, именно данные представления о кинематике одноопорного ортостатического положения объясняют то, что при изучении одноопорной позы обычно не принимаются в расчет связки тазобедренного сустава, articulatio coxae, и силы их реакции.

Здесь необходимо напомнить, что в теоретической механике связью называют тело, ограничивающее перемещение, а сила реакции связи, направленная вдоль нее, и является пассивной силой (Бутенин Н.В. и соавт., 1985). По аксиоме связей всякую связь можно отобразить или заменить силой ее реакции. Сила реакции связи направлена в сторону, противоположную направлению, в котором связь препятствует перемещению рассматриваемого тела (Никитин Н.Н., 1990). Соответственно, в опорно-двигательной системе внутренними связями являются связки и суставные поверхности. Мышцы являются активными силами, независящими от связей, и связями не могут считаться.

Следует отметить, что ни одна из известных механических моделей тазобедренного сустава, articulatio coxae, не учитывала влияние связки головки бедренной кости и силы ее реакции на поддержание устойчивого равновесия в одноопорной ортостатической позе. Вместе с тем отдельные исследователи обращали внимание на связку головки бедренной кости в ортостатической позе. В частности, М.Ф. Иваницкий (1948) писал «…при ассиметричном положении тела, когда таз располагается косо, круглая связка бедра на стороне опорной, обычно выпрямленной ноги натягивается и способствует укреплению тазобедренного сустава этой ноги».

Для уточнения представлений о биомеханике одноопорной ортостатической позы мы использовали трехмерную механическую модель тазобедренного сустава, описанную выше. На первом этапе данной серии экспериментов мы на механической модели тазобедренного сустава воспроизвели отводящую группу мышц и нагрузку весом тела. Для имитирования отводящей группы мышц использован бытовой динамометр – безмен пружинный циферблатный БПЦ-10-01, ТУ РБ 02566668, 019-94, выпущенный Минским заводом «Эталон» (Республика Беларусь) (Рис. 1).

Рис. 1. Бытовой динамометр – безмен пружинный циферблатный БПЦ-10-01, ТУ РБ 02566668, 019-94, использованный для воспроизведения отводящей группы мышц.

  

Для воспроизведения действия веса тела использована нагрузка массой 1 и 2 кг (Рис. 2).

 

Рис. 2. Нагрузки, использованные для воспроизведения действия веса тела, подвешенные на динамометре; слева – 1 кг, справа – 2 кг.

 

С целью снижения трения в шарнире модели на поверхность головки бедренной части модели и ответную ей поверхность модели вертлужной впадины наносилось масло смазочное бытовое по ТУ 1–15–691–77 (Рис. 3).

Рис. 3. Нанесение смазки – масла смазочного бытового на поверхность головки бедренной части модели (вверху), и ответную ей поверхность модели вертлужной впадины (внизу).

Для уточнения значения отводящей группы мышц тазобедренного сустава, articulatio coxae, на головку бедренной части модели была установлена тазовая часть модели. Ей придано положение, при котором планка, воспроизводящая крыло подвздошной кости, ala ossis ilii, обращалась вверх. При этом отмечено, что без постороннего вмешательства тазовая часть модели самостоятельно не удерживалась на головке и стремилась опрокинуться, повернувшись в сагиттальной плоскости вперед или назад. Для стабилизации тазовой части модели крайнее отверстие планки, воспроизводящей крыло подвздошной кости, соединялось бытовым динамометром – аналогом отводящей группы мышц с верхним отверстием планки, воспроизводящей большой вертел, trochanter major, бедренной кости, os femur (Рис. 4). 

Рис. 4. Механическая модель тазобедренного сустава с аналогом отводящей группы мышц (бытовым динамометром).


Имеющаяся в конструкции бытового динамометра пружина, воспроизводящего действие отводящей группы мышц, удерживала от опрокидывания тазовую часть модели. Стрелка бытового динамометра отклонялась, регистрируя вес тазовой части модели. Наиболее стабильно было положение тазовой части модели во фронтальной плоскости. В сагиттальной и горизонтальной плоскости система легко выводилась из равновесия.

С целью моделирования действия веса тела к крайнему отверстию грузового кронштейна тазовой части модели подвешивалась нагрузка массой 2 кг (Рис. 5). 

Рис. 5. Механическая модель тазобедренного сустава с аналогом отводящей группы мышц (бытовым динамометром) и нагрузкой – 2 кг, воспроизводящей действие веса тела в одноопорной ортостатической позе и одноопорном периоде шага (в шарнир модели введено масло смазочное бытовое, его потеки видны на плоскости опоры). 

 

Нагрузка приводила систему в движение. Тазовая часть модели отклонилась вниз, а пружинная часть бытового динамометра растягивалась. После прекращения возникшего движения и стабилизации модели производилось считывание показаний прибора, которые составили 4 кг. Неоднократная повторная нагрузка и разгрузка модели дала аналогичные результаты. Величина действующей нагрузки и показания прибора соотносились как 1:2. Аналогичное соотношение присутствовало между величиной плеча аналога отводящей группы мышц и плеча нагрузки, воспроизводящей вес тела. Полученные в эксперименте значения соответствовали расчетным значениями по формуле для рычага первого рода. Данный эксперимент воспроизводил условия нагрузки тазобедренного сустава, articulatio coxae, в одноопорном периоде шага без натяжения связок и в напряженной одноопорной ортостатической позе.

С целью уточнения роли вертлужной губы, labrum acetabulare, для поддержания таза, pelvis, в положении устойчивого равновесия при действии нагрузки весом тела, вышеописанная механическая модель тазобедренного сустава дополнена аналогом вертлужной губы. Затем для моделирования действия веса тела к крайнему отверстию грузового кронштейна тазовой части модели подвешена нагрузка массой 2 кг, а крайнее отверстие планки, воспроизводящей крыло подвздошной кости, ala ossis ilii, соединено бытовым динамометром –аналогом отводящей группы мышц (Рис. 6).  

Рис. 6. Механическая модель тазобедренного сустава с аналогом отводящей группы мышц (бытовым динамометром) и аналогом вертлужной губы, при действии нагрузки 2 кг (имитация одноопорной ортостатической позы и одноопорного периода шага).

 

Воздействие нагрузки приводило систему в движение. Тазовая часть модели отклонялась вниз, пружинная часть бытового динамометра растягивалась. После прекращения возникшего движения и стабилизации модели произведено считывание показаний прибора, которые составили 3.7 кг. Это оказалось меньше, чем в опытах без аналога вертлужной губы. Описанный эксперимент показал, что вертлужная губа, labrum acetabulare, способна уменьшить нагрузку на отводящую группу мышц в напряженной одноопорной ортостатической позе и одноопорном периоде шага при отсутствии натяжения связок. Аналог вертлужной губы прижимал модель вертлужной впадины к головке бедренной части модели и напряженно охватывал ее, что увеличивало трение в шарнире. 

Смотри также:

Механическая модель тазобедренного сустава

Моделирование взаимодействия суставных поверхностей 

Моделирование функции синовиальной жидкости 

Моделирование функции вертлужной губы  

Моделирование функции внесуставных связок 

Механическая модель с аналогом связки головки бедренной кости

Моделирование движений с аналогом связки головки бедренной кости

Моделирование крепления у края ямки вертлужной впадины

Моделирование крепления в вырезке вертлужной впадины

Моделирование крепления на периферии вертлужной впадины

Анализ изменения проксимальной области крепления 

Моделирование взаимодействия связок тазобедренного сустава

Моделирование функции комплекса наружных связок

                                                                     

Критика

Описанная конструкция модели имитировала нативный тазобедренный сустав без связок, содержала аналог вертлужной губы и отводящей группы мышц. Нами воспроизводилось действие веса тела приблизительно также, как в одноопорном ортостатическом положении. Использованная конструкция позволяла подвешивать нагрузку исключительно во фронтальной плоскости. Причем нагрузка прикладывалась к точке, лежащей приблизительно на одном уровне с центром шарнира, что не соответствует реальному положению общего центра масс тела.


Примечания

Впервые эксперименты на механической модели тазобедренного сустава с аналогом связки головки бедренной кости нами описаны в книге «Рассуждение о морфомеханике» в разделах: 4.6.12 Трехмерная модель,  5.4.7 Моделирование одноопорного ортостатического положенияДополненную версию представленного выше экспериментального материала мы опубликовали в одиннадцатой главе второго тома монографии с юмором названой «Биомеханика пингвинов» [academia.edu]. Данная работа написана для личного использования и узкого круга лиц. В книге собраны, систематизированы и проанализированы результаты 25-ти лет изучения ligamentum capitis femoris и смежных тем. 
Расшифровку цитированных источников смотри в Списке литературы.

Первоисточник

Архипов СВ. Биомеханика пингвинов: заметки к вопросу о причинах ковыляющей походки и перспективах ее ремоделирования во имя обретения грациозности, сочиненные врачом, к.м.н. Сергеем Васильевичем Архиповым, в бытность им с 1992-го по 2017-й год хирургом и травматологом-ортопедом, по вдохновению в 1991-ом году его сестрою Еленой Васильевной, со светлой любовью к ней и благодарностью! Манускрипт в 5 томах. Т. 2. Главы 7-11. Напечатано Автором во граде Королев при попечении его супруги Людмилы Николаевны, ММXVIII A.D. [2018], bonum factum! [на благо и счастье], 452 с. [academia.edu]


Ключевые слова

отводящая группа мышц, вертлужная губа, роль, функция, эксперимент, механическая модель 

 СОДЕРЖАНИЕ РЕСУРСА

Эксперименты и наблюдения

1991-2021АрхиповСВ


Популярные статьи

Каталог тестов патологии LCF

   каталог тестов патологии ligamentum capitis femoris Архипов С.В.     Содержание [i]   Резюме [ii]   Введение [iii]   Тестирование в положении лежа [iv]   Тестирование в положении стоя [v]   Изучение походки [vi]   Список литературы [vii]   Приложение [i]   Резюме Представлено описание тестов для выявления и дифференциальной диагностики патологии ligamentum capitis femoris ( LCF ). [ii]   Введение Одна из первых работ посвященная диагностике травмы LCF, показала многообразие симптомов: боль в паху, ригидность тазобедренного сустава, иногда длительно существующие минимальные клинические данные или же признаки такие же как при остеоартрите (1997GrayA_VillarRN). По прошествии более десятилетия исследователи констатировали: «к сожалению, не существует специального теста для обнаружения разрывов LCF», известные на то время признаки являлись неспецифичны и наблюдались также при другой внутрисуставной патологии тазобедренн...

К вопросу о прочности LCF

  К  вопросу о прочности   ligamentum   capitis   femoris Архипов С.В.     Содержание [i]   Аннотация [ii]   О прочности LCF [iii]   Список литературы [iv]   Приложение [i]   Аннотация Наше мнение по поводу низкой прочности  ligamentum   capitis   femoris  ( LCF ), согласно исследованию  Stetzelberger   V . M . и соавт. (2024). [ii]   О прочности LCF Статья  Stetzelberger   V . M . и соавт . « Насколько прочна круглая связка бедра? Биомеханический анализ»  (2024), примечательна строгой методологией и глубиной изучения литературы. В полученных авторами результатах наше внимание привлекла низкая  предельная нагрузка до разрушения 126±92 Н у  LCF   ( 2024StetzelbergerVM_TannastM ).  Усредненно это эквивалентно 13 кг. При определении прочности LCF, полученной у группы лиц неустановленного возраста с переломом шейки бедренной кости, другая команда исследователей о...

Кто и когда впервые описал повреждение LCF? Часть 1

  Кто и когда впервые описал повреждение   ligamentum capitis femoris?  Часть 1. Архипов С.В.   Содержание Часть 1 [i]   Аннотация [ii]   Введение [iii]   Доисторический период Часть 2 [iv]   Исторический период [v]   Вмешательства в текст Часть 3 [vi]   Египетский врач Часть 4 [vii]   Азиатский прорицатель [viii]   Хронологическая таблица Часть 5 [ix]   Заключение [x]   Список литературы [xi]   Приложение [i]   Аннотация Книга «Берешит», в переводе именуемая «Бытие», является одним из древнейших художественных текстов. Кроме тенденциозно трансформированных легенд и вымысла, она содержит важные медицинские и естественнонаучные факты. Произведение написано на севере Египта вскоре после минойского извержения, вероятно в конце 17-го века до современной эры. Над протографом работал азиатский прорицатель, ставший чиновником и египетский врач-энциклопедист. Последний впервые в истории описывает механизм повреждени...

Кто и когда впервые описал повреждение LCF? Часть 5

  Кто и когда впервые описал повреждение   ligamentum capitis femoris?  Часть 5. Архипов С.В.     Содержание Часть 1 [i]   Аннотация [ii]   Введение [iii]   Доисторический период Часть 2 [iv]   Исторический период [v]   Вмешательства в текст Часть 3 [vi]   Египетский врач Часть 4 [vii]   Азиатский прорицатель [viii]   Хронологическая таблица Часть 5 [ix]   Заключение [x]   Список литературы [xi]   Приложение [i]   Аннотация Книга «Берешит», в переводе именуемая «Бытие», является одним из древнейших художественных текстов. Кроме тенденциозно трансформированных легенд и вымысла, она содержит важные медицинские и естественнонаучные факты. Произведение написано на севере Египта вскоре после минойского извержения, вероятно в конце 17-го века до современной эры. Над протографом работал азиатский прорицатель, ставший чиновником и египетский врач-энциклопедист. Последний впервые в истории описывает механизм пов...

1996ChenHH_LeeMC

     Аннотация статьи Chen HH, Li AF, Li KC, Wu JJ, Chen TS, Lee MC. Adaptations of ligamentum teres in ischemic necrosis of human femoral head (Адаптация круглой связки при ишемическом некрозе головки бедренной кости человека, 1996). Авторы исследуют прочность ligamentum capitis femoris (LCF) при аваскулярном некрозе и переломе шейки бедр енной кости. Оригинал на английском языке доступен по ссылке: 1996ChenHH_LeeMC . Аннотация О биомеханических свойствах круглой связки человека известно немного. Для более полного изучения круглой связки были измерены её размеры и механические свойства в 22 случаях острого перелома шейки бедренной кости и в 21 случае ишемического некроза головки бедренной кости. Образцы сначала были предварительно подготовлены, а затем нагружены до разрушения на испытательной машине с высокой скоростью деформации 100% с(-1). Группа с ишемическим некрозом имела значительно больший объём (3,09 ± 1,81 мл против 1,30 ± 0,62 мл) и площадь поперечного сечения ...