К основному контенту

НОВЫЕ ПУБЛИКАЦИИ

  Н ОВЫЕ ПУБЛИКАЦИИ РЕСУРСА      30 .06.2025 Создан раздел  YOUTUBE   (публикации на автороском канале  Youtube )  Интернет-журнал "О КРУГЛОЙ СВЯЗКЕ БЕДРА", июнь 2025 29 .06.2025 1993 BaumelJ . Указаны области крепления LCF у птиц.  Крупнейшая LCF . Среди ныне живущих тетраподов крупнейшая LCF у саванной разновидности африканского слона.  Наименьшая LCF . Среди тетраподов наименьшая длина LCF у лягушки вида Paedophryne amauensis .  ЛЮБОПЫТНЫЕ ФАКТЫ О ДЛИНЕ LCF   Публикация в группе faceboo k.      28 .06.2025 1932 StolpeM . Автором изучена LCF у птиц, в основном водоплавающих, отмечена сила и роль данной структуры. 27 .06.2025 1880GadowHF.  LCF наблюдалась у нанду, казуара и страуса, отмечается ее прочность.  1864MacalisterA. LCF наблюдалась у страуса, отмечается ее прочность и описана форма.  1971CracraftJ. LCF изучена у голубя, отмечается ее прочность и описана биомеханика. 25 .06....

Новая биомеханика тазобедренного сустава: иллюстрированный очерк


Новая биомеханика тазобедренного сустава: иллюстрированный очерк

С.В. Архипов

(перевод статьи: Arkhipov SV. New Biomechanics of the Hip Joints: Ligamentum Teres as a Functional Relation. Part I. Pictorial Essay. Ligamentum Teres – Ligamentum Incognitum. 2019, September 22:1–25.)

ВВЕДЕНИЕ

Впервые в истории человечества упоминание о ligamentum capitis femoris (LCF) и связанной с ее повреждением патомеханикой ходьбы имеется в древнем литературном памятнике книга «Бытие» (32:24-24,31-32), созданной примерно 3600 лет назад (2019Arkhipov_Skvortsov; 2023Архипов).

Рис. 1. LCF = ligamentum teres тазобедренного сустава, рисунок Х.В. Картера Carter (1870Grey).
 
 Рис. 2. Карандашный рисунок «Переправа через реку Иавок» по мотивам книги «Бытия» 32:22 (автор: Людмила Архипова, 2008).


Первое описание LCF в медицинском тексте дано Гиппократом Косским в трактате «О рычаге», написанном в V-IV вв. до н. э. (1844Littre). 

Мы знаем, что при нормальной LCF ходьба легкая, ритмичная и симметричная, но не знаем «почему». Смотрите видео: Normal Walking 

Мы даже не знаем, почему раскачивается таз при ходьбе! 

Известно, что при опоре на одну ногу при обычной ходьбе происходит приведение в тазобедренном суставе и наклон таза в противоположную сторону. 

Рис. 3. Ходьба in vivo – фаза опоры на одну ногу в норме; видеокадр.

Рис. 4. Ходьба in vitro – фаза опоры на одну ногу в норме; кадр видео (2013Архипов).

Рис. 5. Инструментальный 3D-анализ походки; слева – фаза опоры на одну ногу при обычной ходьбе; справа – графики движений таза и бедра во фронтальной плоскости при обычной ходьбе.

Наклон таза и приведение в опорном тазобедренном суставе наблюдаются и в одноопорном ортостатическом положении. 

Рис. 6. Переход из двуопорного в одноопорное ортостатическое положение (2013Архипов).

В позе статуи также наблюдаются наклон таза и приведение в опорном тазобедренном суставе.

Рис. 7. Библейский Давид (автор: Микеланджело, 1501–1504;
 копия в ГМИИ им. А.С. Пушкина, Москва).

Подобное положение таза было замечено еще в древности смотри: Гермес оратор (V в. до н. э.), Диадумен (около 420 г. до н. э.), Афродита Книдская (4 в. до н. э.), Геракл с Бычьего форума (2 в. до н. э.), Победоносный Юноша ( 300–100 до н. э.), Эфеб из Антикиферы (70–60 до н. э.). 

Первым изображением наклона таза в медицинской книге является иллюстрация к трактату Андрея Везалия «De humani corporis Fabrica» (1543Vesale).

Рис. 8. Рисунок из книге «De humani corporis Fabrica» (1543Vesale); иллюстрация Мастерской Тициана (Tiziano Vecelli) или Яна Стефана ван Калькара (1987Harcourt).

 
Позже мы видим это в книге «Osteographia» Уильяма Чеселдена (1733).

Рис. 9. Рисунок в книге «Остеография» (1733Cheselden);
автор Джерард Вандергухт и/или Джейкоб Шейнвойт (2011Kornell).

Почему мы покачиваем тазом при ходьбе и наклоняем его в положении стоя? 

Наша гипотеза: для натяжения LCF. 

Гален Пергамский (II-III вв. н. э.) в «Hippocratis de articulis liber Galeni in eum commentarii quatuor» называет LCF — «ἰσχυρότατος», т. е. «крепчайшая» (1829Kühn). Согласно Wenger et al. (2007) прочность LCF может достигать 882±168 Н! Теоретически LCF может функционировать как подвес таза.

Рис. 10. Гален Пергамский; рисунок из книги
«Operum Hippocratis Coi, et Galeni Pergameni…» (1638René).

Лауреат Нобелевской премии Янош (Ганс) Селье (1907-1982) писал, что значительный вклад в изучение стресса был внесен простыми средствами (1960Селье).

Рис. 11. Фотопортрет проф. Ганса Селье
(оригинал на сайте wikipedia.org, CC BY-SA 4.0, 1/2 часть изображения).

Мы тоже начали исследование биомеханики тазобедренного сустава с использованием упрощенных моделей... 

ОБСУЖДЕНИЕ

I. Первоначально было подтверждено, что наклон таза и приведение бедра приводят к натяжению LCF. 

Рис. 12. Плоскостная модель тазобедренного сустава с аналогом LCF
 (изготовлена до 2004 г.); общий вид модели.


Рис. 13. Моделирование приведения и отведения на
плоскостной модели тазобедренного сустава с аналогом LCF.

II. Эксперименты на модели тазобедренного сустава (синтетические кости) с аналогом LCF.

Рис. 14. Модель тазобедренного сустава с аналогом LCF;
 моделирование отведения и приведения; визуализация натяжения LCF.

III. Эксперименты на механической модели тазобедренного сустава с аналогом LCF.

Рис. 15. Механическая модель тазобедренного сустава с аналогом LCF;
соединение компонентов и общий вид модели.

Рис. 16. Механическая модель тазобедренного сустава с аналогом LCF;
 моделирование отведения и приведения.

Мы доказали, что LCF служит ограничителем приведения и стабилизатором таза.

IV. Эксперименты на механической модели тазобедренного сустава с плоской моделью тазовой части и аналогом LCF, а также на механической модели головки бедренной кости с аналогом LCF.

Мы наблюдали эффект прижатия вертлужной впадины к головке бедренной кости.

Рис. 17. Механическая модель тазобедренного сустава с плоской моделью тазовой части и аналогом LCF – моделирование приведения (слева); механическая модель головки бедренной кости с аналогом LCF – возникновение равнодействующей силы (справа).

Эффект прижатия вертлужной впадины к головке бедренной кости важен для предотвращения вывиха бедра. 

V. Натянутая LCF образует вантовый тип подвеса таза и обеспечивает дополнительную поддержку тела.

Рис. 18. Плоскостная модель тазобедренного сустава с аналогом LCF (1/2 тазовой части); моделирование приведения.

Вантовый мост как аналог системы таз-LCF.
 

Рис. 19. Вантовый мост (Владивосток, Россия).

LCF функционирует как подвес таза вантового типа. 

VI. Трансформация тазобедренного сустава в рычаг третьего рода и давление на нижний сектор головки бедренной кости; эксперименты на механической модели проксимального отдела бедренной кости с аналогом LCF. 

Рис. 20. Механическая модель проксимального отдела бедренной кости с аналогом LCF; моделирование приведения.

Рис. 21. Плоскостная модель тазобедренного сустава с аналогом LCF (1/2 тазовой части); моделирование приведения – происходит компрессия нижнего сектора головки бедренной кости.

Натяжение LCF вызывает появление компрессии в нижнем секторе головки бедренной кости.

VII. Сила реакции LCF уменьшает компрессию в верхнем секторе головки бедренной кости и увеличивает ее в нижнем секторе.

Рис. 22. Механическая модель тазобедренного сустава с плоской моделью тазовой части и аналогом LCF; моделирование отведения.

VIII. Морфологические доказательства.

В нижнем секторе головки бедренной кости хрящевой слой тоньше, поскольку компрессия со стороны нижнего сектора вертлужной впадины больше.

Рис. 23. Перелом шейки бедра и травматический разрыв LCF; интраоперационное наблюдение; обратите внимание на толщину хряща в нижнем секторе головки бедренной кости.

Связочно-мышечное взаимодействие обеспечивает компрессию проксимального конца бедренной кости.


Рис. 24. Упрощенная схема взаимодействия LCF и
мышц в области тазобедренного сустава.

Медиальный сектор второй трабекулярной системы верхнего конца бедренной кости является результатом давления на нижний сектор головки бедренной кости со стороны вертлужной впадины.

Рис. 25. Трабекулярные системы бедренной кости и таза;
II М – медиальная область второй трабекулярной системы.

IX. Натянутая LCF шунтирует массу тела и разгружает отводящую группу мышц тазобедренного сустава.

Рис. 26. Механическая модель тазобедренного сустава с аналогом LCF и аналогом отводящей группы мышц.

LCF служит шунтом веса тела и превращает тазобедренный сустав в аналог рычага третьего рода. 

X. Без LCF тазобедренный сустав функционирует только как рычаг первого рода.

Рис. 27. Механическая модель тазобедренного сустава
с аналогом отводящей группы мышц без аналога LCF.

XI. Противоречие как доказательство.

В «классической биомеханике» (без LCF) тазобедренный сустав функционирует как рычаг первого рода. Сжатие головки бедра в одноопорной позе составляет 175 кг (1976Pauwels), и достигая 229 кг при обычной ходьбе (1993Bombelli).

 

Рис. 28. Схемы «классической биомеханики» тазобедренного сустава (иллюстрации из Pauwels (1976) и Bombelli (1993) как графические цитаты).

В некоторых случаях при ходьбе компрессия превышает вес испытуемого в 5,8 раза (1966Paul). 

В связи с этим отдельные исследователи задавались вопросом: «...что компенсирует огромные силы, приложенные к головке бедренной кости?» (1975Янсон). 

Действительно, что может компенсировать огромное давление на головку бедра? 

Paul (1966), Pauwels (1976) и Bombelli (1993) правы, при отсутствии LCF сила, создаваемая отводящей группы мышц, примерно в три раза превышает массу тела: т. е. эквивалентна 210 кг при общей массе тела 70 кг.

Рис. 29. Рычажная модель тазобедренного сустава (без аналога LCF).

Kapandji (2009) указывает: m. gluteus medius может развивать силу – 16 кг, m. gluteus minimus – 4,9 кг, m. tensor fascia lata – 7,6 кг; т. е. всего 28,5 кг! 

XII. Парадокс m. gluteus medius в качестве доказательства.

При одноопорной позе, в середине и конце одноопорной фазы цикла шага сила (электромиографическая активность) m. gluteus medius уменьшается.

Рис. 30. ЭМГ m. gluteus medius; инструментальный 3D анализ походки.

Причиной снижения мышечной активности является напряжение LCF. 

XIII. Во время стойки на одной ноге, в позе древней статуи и в одноопорную фазу цикла шага LCF натянута.

Рис. 31. Наклон таза и приведение бедра при ходьбе; LCF натянута.

XIV. Рентгенограмма в положении стоя на одной ноге (рентгенологическое подтверждение).

Рис. 32. Смещение ямки головки бедренной кости вверх
(красная стрелка) при приведении в опорном тазобедренном суставе.

LCF – натянута.
 

Рис. 33. Смещение ямки головки бедра вниз (красная стрелка)
при отведении в опорном тазобедренном суставе.

LCF – ненатянута. 

XV. Натянутая LCF является синергистом отводящей группы мышц тазобедренного сустава. 

Рис. 34. Рычажная модель тазобедренного сустава с аналогом LCF.

XVI. Наклон таза и приведение бедра в тазобедренном суставе без связок. 

Рис. 35. Моделирование одноопорной фазы цикла шага при нормальной ходьбе на динамической модели тазобедренного сустава с аналогом m. gluteus medius (без аналогов связок).

Возрастает усилие m. gluteus medius. 

XVII. Наклон таза и приведение бедра только при наличии в тазобедренном суставе LCF.

Рис. 36. Моделирование одноопорной фазы шага при ходьбе на динамической модели тазобедренного сустава с аналогом LCF и аналогом m. gluteus medius.

Уменьшается усилие m. gluteus medius.

XVIII. Наклон таза и приведение бедра при наличии в тазобедренном суставе наружных связок и LCF.

Рис. 37. Моделирование одноопорной фазы шага при ходьбе на динамической модели тазобедренного сустава с аналогом LCF, аналогами наружных связок и аналогом m. gluteus medius.

Усилие m. gluteus medius уменьшается, а стабильность таза увеличивается.

 IXX. Эксперименты на динамической модели тазобедренного сустава.

Моделирование фазы опоры на одну ногу при ходьбе в норме. Посмотрите видео: Gluteus Medius & LCF 

Экспериментально подтверждено, что LCF действует как ограничитель приведения бедра, превращает тазобедренный сустав в аналог рычага третьего рода, предотвращает вывих, подвешивает таз и действует как синергист отводящей группы мышц. 

ХХ. Моделирование одноопорной позы с максимальным наклоном таза и приведением бедра.

Рис. 38. Динамическая модель тазобедренного сустава с аналогами связок и мышц.

Наибольшая устойчивость таза достигается при натяжении всех связок тазобедренного сустава. 

XXI. Моделирование одноопорной позы без наклона таза.

Рис. 39. Динамическая модель тазобедренного сустава с аналогами связок и мышц.

Стабильность таза достигается только усилием m. gluteus medius и m. rectus femoris. 

XXII. Моделирование одноопорной позы с оптимальным наклоном таза и приведением бедра.

Рис. 40. Динамическая модель тазобедренного сустава с аналогами связок и мышц.

Стабильность таза достигается за счет натяжения LCF и усилия m. gluteus medius. 

XXIII. При активации отводящей группы мышц при натяжении LCF и наружных связок давление на головку бедра распределяется равномерно. В норме давление на верхний сектор головки бедра примерно эквивалентно весу тела.

Рис. 41. Распределение сил в тазобедренном суставе при стоянии на одной ноге, в позе древней статуи и в фазе опоры на одну ногу при обычной ходьбе (с наклоном таза и приведением бедра).

XXIV. Правило моментов для опорного тазобедренного сустава при стоянии на одной ноге, в позе древней статуи и в фазе опоры на одну ногу при обычной ходьбе (учитываются только силы реакции связок, отводящих и приводящих мышц).

Рис. 42. Правило моментов для опорного тазобедренного сустава при стоянии на одной ноге, а также в позе древней статуи и в фазе опоры на одну ногу при обычной ходьбе.

ЗАКЛЮЧЕНИЕ

LCF является важным компонентом тазобедренного сустава. Натяжение LCF обеспечивает наклон таза и приведение бедра в опорном тазобедренном суставе при стоянии на одной ноге, в позе древней статуи, а также в фазе опоры на одну ногу при обычной ходьбе. LCF поддерживает таз как подвес, разгружает отводящую группу мышц тазобедренного сустава, способствует равномерному распределению давления на головку бедра. 

ОГРАНИЧЕНИЯ

Мы признаем, что эта работа имеет ограничения, присущие экспериментальным исследованиям механических моделей. Необходимы дополнительные изыскания для уточнения распределения давления на головку бедра для опорного тазобедренного сустава при стоянии на одной ноге, в позе древней статуи и в фазе опоры на одну ногу при ходьбе в норме. 

Список литературы

Arkhipov SV, Skvortsov DV. Ligamentum capitis femoris: first written mentions. Muscles, Ligaments and Tendons Journal. 2019, 9(2)156–64.

Arkhipov SV. On the role of the ligamentum capitis femoris in the maintenance of different types of erect posture. Hum Physiol. 2008;34(1)79–85.

Bombelli R. Structure and function in normal and abnormal hip: how to rescue mechanically jeopardized hip. 3-rd. ed. Berlin, Heidelberg, New York: Springer-Verlag, 1993.

Cheselden W. Osteographia, or the anatomy of the bones. London: W. Bowyer [?], 1733.

Gray H. Anatomy, descriptive and surgical / by Henry Gray. The drawings by H. V. Carter. With additional drawings in the second and later editions by Dr. Westmacott. The dissections jointly by the author and Dr. Carter. With an introduction on general anatomy and development by T. Holmes. Philadelphia: H.C. Lea, 1870.

Harcourt G. Andreas Vesalius and the anatomy of antique sculpture. Representations. 1987;17:28–61.

Kapandji AI. The physiology of the joints: Lower limb. Vol. 2. New Delhi: Elsevier Exclusive, 2009.

Kornell M. (2011, August 22) Accuracy and Elegance in Cheselden’s Osteographia (1733). Retrieved September 20, 2019. from [https: // publicdomainreview.org/2011/08/22/accuracy-and-elegance-in-cheseldens-osteographia-1733/]

Kühn CG (Ed). Galeni opera omnia. In Hippocratis librum de articulis et Galeni in eum commentarii IV. T. XVIIIA. Leipzig, 1829.

Littre E. Oeuvres complètes d'Hippocrate, traduction nouvelle avec le texte grec en regard, collationné sur les manuscrits et toutes les éditions; accompagnée d'une introduction, de commentaires médicaux, de variantes et de notes philologiques; Suivie d'une table générale des matières, Par É.Littré. Tome quatrieme. Paris: J.B.Baillière 1844.

Paul JP. The Biomechanics of the hip-joints and its Clinical Relevance. Proceedings of the Royal Society of Medicine. 1966;59:943–8.

Pauwels F. Biomechanics of the normal and diseased hip: Theoretical foundation, technique and results of treatment. An atlas. Berlin: Springer-Verlag, 1976.

René C. (Ed.) Operum Hippocratis Coi, et Galeni Pergameni, medicorum omnium principum, T. III. Paris, 1638.

Vesale A. Andreae Vesalii bruxellensis, scholae medicorum Patauinae professoris, de Humani corporis fabrica. Libri septem. Basileae: J.Oporinum, 1543.

Wenger DR, Miyanji F, Mahar A, Oka R. The mechanical properties of the ligamentum teres: a pilot study to assess its potential for improving stability in children's hip surgery. J Pediatr Orthop. 2007;27(4) 408–10.

Архипов С.В. Дети человеческие: истоки библейских преданий в обозрении врача. Обновляемое электронное эссе, снабженное ссылками на интерактивный материал. Йоэнсуу: Издание Автора, 2023; версия 1.0.0.

Архипов СВ. Роль связки головки бедренной кости в патогенезе коксартроза: дис. … канд. мед. наук. М., 2013.

Селье Г. Очерки об адаптационном синдроме. Москва: Медгиз, 1960; [transl. Selye H. The story of the adaptation syndrome. (Told in the form of informal, illustrated lectures). Montreal: Acta Inc., 1952.]

Янсон ХА. Биомеханика нижней конечности человека. Рига: Зинатне, 1975.  

Внешние ссылки:

Arkhipov SV. New Biomechanics of the Hip Joints: Ligamentum Teres as a Functional Relation. Part I. Pictorial Essay. Ligamentum Teres – Ligamentum Incognitum. 2019, September 22:1–25. DOI: 10.13140/RG.2.2.11991.62881 [researchgate.net ,  roundligament.blogspot.com] 

Ключевые слова:

ligamentum capitis femoris, ligamentum teres, связка головки бедра, круглая связка, связка головки бедренной кости, отводящая группа мышц, тазобедренный сустав, модель, биомеханика, ходьба, цикл походки, средняя ягодичная мышца, стойка на одной ноге 

Примечание:

Статья была впервые опубликована в 2019 г. на сайте автора ligteres.com.

СОДЕРЖАНИЕ РЕСУРСА

 Биомеханика и морфомеханика

Популярные статьи

КАТАЛОГ ЛИТЕРАТУРЫ О LCF

  Каталог литературы о LCF   (Библиографический разде: книги, статьи, ссылки, упоминания…) 21-й ВЕК https://kruglayasvyazka.blogspot.com/2024/10/21.html   20-й ВЕК https://kruglayasvyazka.blogspot.com/2024/10/20.html   19-й ВЕК https://kruglayasvyazka.blogspot.com/2024/10/19.html   18-й ВЕК https://kruglayasvyazka.blogspot.com/2024/10/18.html   17-й ВЕК https://kruglayasvyazka.blogspot.com/2024/10/17.html   16-й ВЕК https://kruglayasvyazka.blogspot.com/2024/10/16.html   11-15-й ВЕК https://kruglayasvyazka.blogspot.com/2024/10/11-15.html   1-10-й ВЕК https://kruglayasvyazka.blogspot.com/2024/10/1-10.html   Железный ВЕК (10 – 1-й век до совр. эры) https://kruglayasvyazka.blogspot.com/2024/10/blog-post_87.html   НЕОЛИТ И БРОНЗА (8,000 – 2,000 лет до совр. эры) https://kruglayasvyazka.blogspot.com/2024/10/8-2.html   СОДЕРЖАНИЕ РЕСУРСА КАТАЛОГИ И БИБЛИОГРАФИИ Учение о...

2025АрхиповСВ. ПОЧЕМУ ВОССТАНОВЛЕНИЕ ВЕРТЛУЖНОЙ ГУБЫ МОЖЕТ БЫТЬ НЕЭФФЕКТИВНО?

Тематический Интернет-журнал О круглой связке бедра Апрель, 2025 Почему восстановление вертлужной губы может быть НЕЭФФЕКТИВНО?: заметка о таинственной «темной материи» в тазобедренном суставе Архипов С.В., независимый исследователь, Йоенсуу, Финляндия Аннотация Восстановление и реконструкция вертлужной губы не предотвращает остеоартрит и нестабильность тазобедренного сустава при ходьбе в случае удлинения ligamentum capitis femoris . Заключение сделано на основании математических расчетов и анализа результатов экспериментов на механической модели. Ключевые слова: артроскопия, тазобедренный сустав, вертлужная губа, ligamentum capitis femoris, ligamentum teres, связка головки бедренной кости, реконструкция, восстановление Введение Почти 80% первичных артроскопий тазобедренного сустава включает восстановление вертлужной губы (2019 WestermannRW _ RosneckJT ). Реконструкция – наиболее распространенная процедура для устранения патологии вертлужной губы и при ревизионной артроскопии (2...

Эндопротез с LCF. Часть 1

  Эндопротезы с аналогом ligamentum capitis femoris как свидетельства смены парадигмы в артропластике: Систематический обзор Часть  1. История, материал и методы Архипов С.В., независимый исследователь, Йоенсуу, Финляндия  

Публикации о LCF в 2025 году (Май)

    Публикации о LCF в 2025 году (Май):  Статьи и книги с упоминанием LCF опубликованные в мае 2025 года. Teytelbaum, D. E., Bijanki, V., Samuel, S. P., Silva, S., Israel, H., & van Bosse, H. J. Does Open Reduction of Arthrogrypotic Hips Cause Stiffness?.  Journal of Pediatric Orthopaedics , 10-1097.  DOI:  10.1097/BPO.0000000000002940   [i]    journals.lww.com   SANTORI, N., & TECCE, S. M. (2025). FUTURE DIRECTIONS IN ARTHROSCOPY FOR HIP TRAUMA.  Advancements of Hip Arthroscopy in Trauma , 136-143.   [ii]     books.google   RANDELLI, F. (2025). ARTHROSCOPIC FREE-BODY REMOVAL AFTER DISLOCATION OR AFTER BULLET/BOMB.  Advancements of Hip Arthroscopy in Trauma , 1-11.   [iii]     books.google   APRATO, A. (2025). ARTHROSCOPIC TECHNIQUES FOR FEMORAL HEAD FRACTURE REDUCTION AND FIXATION.  Advancements of Hip Arthroscopy in Trauma , 38.   [iv]    ...

Дистальное крепление LCF. Часть 1

  Онлайн версия от 23.06.2025   Дистальное крепление ligamentum capitis femoris . Часть 1 Архипов С.В.   Содержание .   Часть 1 . [i]   Аннотация [ii]   Дистальная область крепления LCF [iii]   Развитие головки бедренной кости [iv]   Терминология топографии [v]   Форма и размеры [vi]   Ямка головки бедренной кости [vii]   Строение и свойства головки бедра [viii]   Список литературы [ix]   Приложение ««назад || СОДЕРЖАНИЕ СТАТЬИ ||  вперед»» Часть 1   Часть 2   Часть 3   [i]   Аннотация Приведены общие сведения о дистальной области крепления ligamentum capitis femoris (LCF) человека: головке бедренной кости и ямке головки бедренной кости. [ii]   Дистальная область крепления LCF В  отношении дистальной области крепления LCF, абсолютное большинство исследователей едины в том, что это головка бедренной кости, caput femoris, а точнее, ямка головки бедренной кости, fovea capiti...