К основному контенту

Морфомеханика как новая методология

 

Морфомеханика как новая методология

Архипов-Балтийский С.В.

Все живое на Земле постоянно испытывает влияние внешних и внутренних механических сил. Это воздействие сопровождало биологические объекты (живые системы) на всех этапах эволюции. С его учетом они сформировались в конкретные формы в филогенезе и в соответствии с ним изменяются в онтогенезе. Думается, вполне правомерно считать механические влияния таким же фактором внешней среды живых систем, как температуру, влажность, освещенность, радиоактивный и электромагнитный фон. Данный фактор мы назвали механическим, определяя его как совокупность всех механических воздействий на живую систему. Механический фактор – постоянная и, пожалуй, наиболее значимая компонента окружающего нас материального мира.

Общеизвестно, что механические воздействия способны влиять на форму и строение органов и тканей живых организмов [3, 4]. Указанные явления до сих пор было принято рассматривать в рамках биомеханики. Согласно известным определениям, под ее непосредственную «юрисдикцию» не подпадает изучение влияния механического фактора на биологические процессы [2, 4]. Вместе с тем именно они в живых системах и обуславливают изменение формы, строения и функции. С нашей точки зрения, представляется назревшей необходимостью формирование новой научной дисциплины, рассматривающей связь механического фактора и биологических процессов, протекающих в живых системах. Изучение механического движения и материального взаимодействия тел – прерогатива механики. В свою очередь, форма и строение организмов исследуется морфологией. Новое самостоятельное научное направление нами названо «морфомеханика» и определено как раздел биофизики, изучающий влияние механического фактора на биологические процессы, протекающие в живых системах.

Основные положения морфомеханики:

1. Механический фактор есть совокупность всех механических воздействий на живую систему.

2. Механический фактор влияет на биологические процессы, приводит к изменению формы, строения и функции живых систем.

3. Механический фактор влияет на биологические процессы по закону биоиндукции.

Не вызывает сомнений, что живые системы способны приспосабливаться к механическому фактору [6, 7]. Однако до сих пор точно было не известно, к какой именно характеристике механического фактора происходит адаптация. С нашей точки зрения, живые системы приспосабливаются к существующему в них уровню среднесуточных напряжений. Они способны их отслеживать и даже изменять. Из термина «среднесуточное напряжение» явствует, что это есть среднее напряжение, рассчитанное за сутки. Сутки являются оптимальным, наименьшим из наиболее стабильных глобальных природных ритмов на протяжении многих миллионов лет, в течение которых формировалась жизнь на Земле. С периодом около 24 часа, у человека обнаружено более 300 ритмически меняющихся физиологических функций. Отмечено, что некоторые суточные ритмы сохраняются в культуре тканей как животных, так и растений [5].

Для каждой точки, принадлежащей живой системе, существует некий оптимальный уровень среднесуточных напряжений. Он определяется механическим фактором. В соответствии с ним формируются живые системы и функционируют. При некоторых обстоятельствах уровень оптимальных среднесуточных напряжений может не совпадать с величиной фактических среднесуточных напряжений. Тогда между ними возникает разность, названная нами биоэффективным напряжением. Именно появление биоэффективных напряжений в органах и тканях живых систем и индуцирует в них биологические процессы. Это явление, названное нами биоиндукцией, наблюдается в норме и патологии во всех без исключения живых системах.

Зависимость между биоэффективными напряжениями и биологическими процессами определяется выявленной нами неизвестной ранее закономерностью, которая названа «закон биоиндукции». Он гласит: появляющиеся в живых системах биоэффективные напряжения, представляющие собой разность между фактическими и оптимальными среднесуточными напряжениями, индуцируют биологические процессы, нивелирующие их по принципу отрицательной обратной связи, а не ликвидируемые биоэффективные напряжения приводят к повреждению живых систем. Предтече установленной закономерности и ее частным случаем является «закон реконструирования кости» J. Wolff (1892) [7]. При появлении биоэффективных напряжений живые системы стремятся их ликвидировать в пределах своих возможностей, определенных генотипом. Одним из вариантов может быть изменение режима функционирования. Однако чаще всего порожденные в живой системе биологические процессы изменяют ее строение. При этом может происходить как коррекция уровня фактических среднесуточных напряжений, так и оптимальных, а в ряде случае и то, и другое одновременно. Рост и развитие живой системы в онтогенезе определяется именно этой закономерностью, так же как и те изменения, что наблюдаются при патологии. Уточнение характеристики механического фактора, влияющего на живые системы, дает в руки исследователей отправную точку для вычисления того, как быстро они способны нивелировать биоэффективные напряжения. Данное ключевое понятие морфомеханики названо «скорость биоиндукции» и может быть найдена по формуле:

vв = Δσв/Δt,

где: vв - скорость биоиндукции; Δt - интервал времени, за который живая система изменила величину градиента биоэффективного напряжения Δσв (см. также www. enet.ru/ ~archipov/).

На базе вышеизложенных положений разработан понятийный и оригинальный математический аппарат, позволяющий перевести биологию и медицину в разряд точных наук. Обрели научное обоснование представления о биологическом поле и биологической энергии. Размерность полученных их единиц измерения аналогичны подобным величинами в физике, что доказывает правомерность наших формул [1]. Указанное дает в руки врача и биолога новую методологию. Привлечение электронно-вычислительной техники позволяет более точно прогнозировать течение биологических процессов в норме и патологии, рассчитывать предполагаемые результаты лечения.

Литература:

1. Архипов-Балтийский С.В. Рассуждение о морфомеханике. Норма: В 2-х томах. – Калининград, 2004. – 820 с. (Рукопись, версия 1.4, испр. и доп.), www. enet.ru/ ~archipov/.

2. Донской Д.Д., Зациорский В.М. Биомеханика: Учебник для институтов физ. культ. – М.: Физкультура и спорт, 1979. – 264 с.

3. Лесгафт П.Ф. Избранные труды по анатомии. – М.: Медицина, 1968. – 372 с.

4. Николаев Л.П. Руководство по биомеханике в применении к ортопедии, травматологии и протезированию. – Киев: Государственное медицинское издательство УССР, 1947. – 316 с.

5. Оранский И.Е. Природные лечебные факторы и биологические ритмы. – М.: Медицина, 1988. – 288 с.

6. Fung Y.C. Biomechanics: motion, flow, stress and growth. - New York, Berlin, Heidelberg…: Springer-verlag, 1990. – 569 p.

7. Martin R.B., Burr D.B., Sharkey N.A. Skeletal tissue mechanics – New York, Berlin, Heidelberg: Springer verlag, 1998. – 392 p.

Автор:

Архипов С.В. – С.В. Архипов-Балтийский является псевдонимом, который использовался до начала 2006 года с целью более точной дифференцировки на научном поле.

Полесская центральная районная больница, ул.Советская д.4, 238630, г. Полесск, Калининградская область, Россия. тел. 011-58-35355. E-mail: archipovkgd@mail.ru , postmaster@archipov.koenig.ru

Ключевые слова:

морфомеханика, патогенез, коксартроз

Цитирование:

Архипов-Балтийский СВ. Морфомеханика как новая методология. Медэлектроника-2004. Средства медицинской электроники и новые медицинские технологии. Материалы Международной научно-технической конференции. Минск: БГУИР, 2004:79-82.

Примечания:

Тезисы опубликованы после августа 2004 года. Это одна из первых публикаций автора, посвященных морфомеханике живых систем и биологическому полю. Согласно теории морфомеханики изложенной в монографии «Рассуждение о морфомеханике» (2004), механический фактор является ключевым в патогенезе заболеваний тазобедренного сустава и изменений ligamentum capitis femoris (LCF).

Сайт www. enet.ru / ~archipov «Морфомеханика» в настоящее время доступен в архиве [web.archive.org]

СОДЕРЖАНИЕ РЕСУРСА

 Биомеханика и морфомеханика

Комментарии

Популярные статьи

Эксперименты на рычажной модели

  Эксперименты на рычажной модели тазобедренного сустава Согласно современным представлениям, тазобедренный сустав , articulatio coxae , в одноопорной ортостатической позе функционирует как аналог рычага первого рода, что зачастую для наглядности иллюстрируется изображением рычажных весов ( Pauwels F ., 1973). С целью дальнейшего изучения биомеханики нижней конечности мы изготовили упрощенную рычажную модель тазобедренного сустава (Рис. 1).   Рис. 1. Рычажная модель тазобедренного сустава (вид с поворотом в 3/4); обозначения: 1 – основание, 2 – грузовая мачта, 3 – кронштейн грузовой мачты, 4 – рычаг, 5 – нагрузка, 6 – динамометр, 7 – серьга динамометра. Рычажная модель тазобедренного сустава выполнена из металлических планок. Она имела горизонтальное основание. К нему прикреплялась грузовая мачта, в верхней точке которой имелся кронштейн. К средней части грузовой мачты присоединялся на горизонтальной оси рычаг, который имел возможность свободного вращения во фронтальной плоскости.

927-942Arabic Bible

  Фрагмент книги Берешит (Вначале) в переводе на арабский, который произвел Саадия Гаон (927-942). В тексте на арабском языке содержатся упоминания о ligamentum capitis femoris ( LCF ) животного и человека. Краткий комментарий смотри ниже. Перевод на английский доступен по ссылке: 927-942Arabic Bible . Цитата. [ a ra] التكوين 32:32 ( источник : 1653WaltonB, p. 145) Современные редакции: لذلك لا يأكل بنو اسرائيل عرق النّسا الذي على حقّ الفخذ الى هذا اليوم . لانه ضرب حقّ فخذ يعقوب على عرق النّسا ( источник : arabicbible.com ) لِذَلِكَ لا يَاكُلُ بَنُو اسْرَائِيلَ عِرْقَ النَّسَا الَّذِي عَلَى حُقِّ الْفَخِْذِ الَى هَذَا الْيَوْمِ لانَّهُ ضَرَبَ حُقَّ فَخْذِ يَعْقُوبَ عَلَى عِرْقِ النَّسَا (источник: copticchurch . net ) Перевод [ Rus ] Бытие 32:32 Точное переложение на русский язык в настоящее время недоступно нашему проекту. Выявлен перевод ключевого термина, обозначающего LCF : النّسا   ~ седалищный ( подробнее см. комментарий). Sa ʻ adia   ben   Joseph .  Pentateuch . 1600 , с

Новости в сети интернет (2004 год)

  Новости в сети интернет Архипов-Балтийский С.В. Содержание 1. Переворот в механике тазобедренного сустава 2. Обозначено новое научное направление 3. Установлена неизвестная ранее закономерность 4. Уточнение ключевых определений биологии 5. Новая трактовка значения сна 6. Уточнена функция связки головки бедра   1. Переворот в механике тазобедренного сустава Установлено, что в ортостатическом положении с опорой на одну ногу, а также в середине одноопорного периода шага, тазобедренный сустав функционирует как рычаг второго рода. Это обеспечивается за счет натяжения связки головки бедра, ограничивающей приведение бедра и наклон таза в неопорную сторону. Благодаря связке головки бедра происходит замыкание тазобедренного сустава во фронтальной плоскости. При этом основная нагрузка приходится на нижние сектора головки бедренной кости и вертлужной впадины. До сих пор считалось, что в одноопорном ортостатическом положении тазобедренный сустав функционирует как рычаг первого рода. Таз удержива

922-722bcElohist

  Фрагмент книги Берешит (Бытие) утраченного библейского источника Элохист, начертанного палеоеврейским письмом. Вариант древнейшего описания повреждения ligamentum capitis femoris ( LCF ) и причины хромоты возрастом 922-722 гг. до совр. эры. Краткий комментарий смотри ниже. Перевод на английский доступен по ссылке: 922-722 bcElohist . Цитата . [ Paleo-Hebrew ] Elohist . Bereshit 32:32-33 (источник: 5784 Moshe   Ben   Amram , стр. 41; правка наша ) Перевод [ Rus ] Элохист. Берешит 32:32-33 И засияло ему солнце, когда он проходил Пынуэйл; а он хромал на бедро свое. Поэтому не едят сыны Исраэйлевы сухой жилы, которая из сустава бедра, до нынешнего дня , потому что коснулся тот сустава бедра Яакова в жилу сухую. (наша правка-реконструкция версии 1978БроерМ_ЙосифонД, Берешит 32:32-33; сохранен текст 922-722 гг. до совр. эры, принадлежащий утраченному библейскому источнику «Элохист») Moshe Ben Amram. Pentateuch in Paleo-Hebrew, 5784. Внешние ссылки Moshe Ben Amram. Pentateuch in Pal

Моделирование одноопорной ортостатической позы при коксартрозе с горизонтальным положением таза

    Моделирование одноопорной ортостатической позы при коксартрозе с горизонтальным положением таза [1] . Введение [2] . Моделирование одноопорной ортостатической позы при коксартрозе без наклона таза в сагиттальной плоскости [3] . Моделирование одноопорной ортостатической позы при коксартрозе с наклоном таза вперед [4] . Моделирование одноопорной ортостатической позы при коксартрозе с наклоном таза назад   [1] . Введение В настоящей серии экспериментальных исследований предпринято изучение взаимодействия связок и мышц тазобедренного сустава, articulatio coxae , при коксартрозе в одноопорной ортостатической позе с горизонтальным положением таза, pelvis . Для постановки опытов нами использована модифицированная модель тазобедренного сустава , которая содержала бедренную часть и объемную тазовую часть с прикрепленной к ней нагрузкой 1 кг. Последняя моделировала действие веса тела и присоединялась к крайнему отверстию грузового кронштейна, находящемуся на уров

Моделирование начала двухопорного периода шага при коксартрозе

  Моделирование начала двухопорного периода шага при коксартрозе [1] . Введение [2] . Моделирование начала второго двухопорного периода шага при коксартрозе [1] . Введение В настоящей серии экспериментов предпринято изучение взаимодействия связок и мышц тазобедренного сустава, articulatio coxae , в начале двухопорного периода шага при коксартрозе. Для постановки опытов нами использована  модифицированная механическая модель.  Конструкция содержала бедренную часть и объемную тазовую часть с прикрепленной к ней нагрузкой 1 кг. Последняя моделировала действие веса тела и присоединялась к крайнему отверстию грузового кронштейна, находящемуся на уровне изображения межпозвонкового диска L 5- S 1 позади плоскости объемной тазовой части. Точка расположения груза воспроизводила общий центр масс тела, локализующийся медиальнее, выше и позади от тазобедренного сустава, articulatio coxae .   Модель воспроизводила функцию трех основных групп мышц тазобедренного сустава, articul

8cent.bcHomer.

  Фрагмент поэмы Гомера Илиада ( Ὅμηρος . Ἰλιάς , ок. 8 в. до совр. эры). Поэт описывает открытый переломо-вывих бедра, который обычно сопровождается повреждением ligamentum capitis femoris ( LCF ). Наш краткий комментарий смотри ниже. Перевод на английский доступен по  ссылке: 8cent.bcHomer .  Цитируемый нами отрывок упоминается в трудах иных авторов: 177-180bGalen , 976-1115TheophilusProtospatharius , 1603IngrassiaeIP , 1724FabriciusJA , 1842GreenhillGA , 2020АрхиповСВ_ПролыгинаИВ . Цитата. [Grc] Ἰλιάς . E . 302-310. (источник: 1 8 9 0Homer ,  p .  9 1) Перевод Илиада. Песнь пятая. Подвиги Диомеда. 302-310. С криком ужасным. Но камень рукой захватил сын Тидеев, Страшную тягость , какой бы не подняли два человека Ныне живущих людей , — но размахивал им и один он; Камнем Энея таким поразил по бедру, где крутая Лядвея ходит в бедре по составу, зовомому чашкой: Чашку удар раздробил, разорвал и беде́рные жилы, Сорвал и кожу камень жестокий. Герой пораженный Пал на колено вперед; и, кол

5-6cent.Georgian Bible

  Фрагмент книги Рождение (Бытие) грузинской Библии ( 5-6 в. ). В тексте на старогрузинском языке содержатся упоминания о ligamentum capitis femoris ( LCF ) животного и человека. Краткий комментарий смотри ниже. Перевод на английский доступен по ссылке: 5-6cent.Georgian Bible . Цитата. [ Geo ( asomtavruli ) ] Ⴜიგნი პირველი Ⴃაბადებისაჲ 32:32 ამისთჳს არა ჭამიან ძეთა ისრაჱლისათა ძარღჳ იგი , რომელ დაუბუშა , რომელი არს ვრცელსა ბარკლისასა , ვიდრე დღენდელად დღედმდე , რამეთუ შეახო ვრცელსა ბარკლისა იაკობისსა , რომელ დაუბუშა . (источник: titus . fkidg 1. uni - frankfurt . de ) (источник: 1 989 წიგნნი   ძუელისა   აღთქუმისანი  [Акакий Шанидзе] , стр. 199-200) Перевод [ Rus ] Рождение 32:32 Переложение на русский язык в настоящее время недоступно нашему проекту. Выявлен перевод ключевого термина: ძარღჳ = ძარღვი = жила (1901ЧубиновДИ; подробнее см. комментарий). Внешние ссылки წიგნნი ძუელისა აღთქუმისანი 978 წლის ხელნაწერის მიხედვით: ტომი 1, ნაკვეთი 1: დაბადებისაჲ. გამოსლვათ

Моделирование асимметричной двухопорной ортостатической позы

  Моделирование асимметричной двухопорной ортостатической позы Различают два основных типа вертикальной позы с опорой на две нижние конечности: симметричная двухопорная ортостатическая поза и асимметричная двухопорная ортостатическая поза (Рис. 1). Рис. 1. Основные типы двухопорной ортостатической позы; слева – симметричная двухопорная ортостатическая поза, справа – асимметричная двухопорная ортостатическая поза. Симметричная двухопорная ортостатическая поза характеризуется горизонтальным положением таза,   pelvis , и равномерной нагрузкой на обе выпрямленные в коленных суставах,   articulatio   genum , нижние конечности. В асимметричной двухопорной ортостатической позе (асимметричный тип стояния или стойка «вольно»), одна из ног выпрямлена, а другая согнута в коленном суставе,   articulatio   genum , и тазобедренном суставе,   articulatio   coxae . При этом таз,   pelvis , располагается под углом к горизонту (Недригайлова О.В., 1967; Иваницкий М.Ф., 1985). Означенные типы вертикальной