К основному контенту

НОВЫЕ ПУБЛИКАЦИИ

  Н ОВЫЕ ПУБЛИКАЦИИ РЕСУРСА     02 .12.2025 1751DuVerneyJG. Автор обсуждает топографию LCF , ее роль и повреждение при вывихах, используя редкий синоним ligament plat.  2025VertesichK_ChiariC.   Авторы обсуждают диагностику патологии LCF на основе рентгенологических и МРТ-данных. 01 .12.2025 Публикации о LCF в 2025 году (Ноябрь) .  Статьи и книги с упоминанием LCF опубликован ные в ноябре  2025 года.  30 .11.2025 Прочность LCF человека. Обзор.    Интернет-журнал "О КРУГЛОЙ СВЯЗКЕ БЕДРА", ноябрь 2025 28 .11.2025 Размер LCF челов ека. Обзор. 27 .11.2025 Форма LCF человека. Обзор. 26 .11.2025 Твердость LCF человека. Обзор. 25 .11.2025 Гибкость LCF челове ка. Обзор . 24 .11.2025 Упругость LCF человека. Обзор.   2008 GaoF _ MaH . Авторы исследуют эластичность LCF и сравнивают ее с аналогичным параметром подвздошно -бедренной связки. 23 .11.2025 Цвет LCF человека. Обзор.   Создан раздел  ХАРАКТЕРИСТИКИ И СВОЙСТВА  ...

Морфомеханика как новая методология

 

Морфомеханика как новая методология

Архипов-Балтийский С.В.

Все живое на Земле постоянно испытывает влияние внешних и внутренних механических сил. Это воздействие сопровождало биологические объекты (живые системы) на всех этапах эволюции. С его учетом они сформировались в конкретные формы в филогенезе и в соответствии с ним изменяются в онтогенезе. Думается, вполне правомерно считать механические влияния таким же фактором внешней среды живых систем, как температуру, влажность, освещенность, радиоактивный и электромагнитный фон. Данный фактор мы назвали механическим, определяя его как совокупность всех механических воздействий на живую систему. Механический фактор – постоянная и, пожалуй, наиболее значимая компонента окружающего нас материального мира.

Общеизвестно, что механические воздействия способны влиять на форму и строение органов и тканей живых организмов [3, 4]. Указанные явления до сих пор было принято рассматривать в рамках биомеханики. Согласно известным определениям, под ее непосредственную «юрисдикцию» не подпадает изучение влияния механического фактора на биологические процессы [2, 4]. Вместе с тем именно они в живых системах и обуславливают изменение формы, строения и функции. С нашей точки зрения, представляется назревшей необходимостью формирование новой научной дисциплины, рассматривающей связь механического фактора и биологических процессов, протекающих в живых системах. Изучение механического движения и материального взаимодействия тел – прерогатива механики. В свою очередь, форма и строение организмов исследуется морфологией. Новое самостоятельное научное направление нами названо «морфомеханика» и определено как раздел биофизики, изучающий влияние механического фактора на биологические процессы, протекающие в живых системах.

Основные положения морфомеханики:

1. Механический фактор есть совокупность всех механических воздействий на живую систему.

2. Механический фактор влияет на биологические процессы, приводит к изменению формы, строения и функции живых систем.

3. Механический фактор влияет на биологические процессы по закону биоиндукции.

Не вызывает сомнений, что живые системы способны приспосабливаться к механическому фактору [6, 7]. Однако до сих пор точно было не известно, к какой именно характеристике механического фактора происходит адаптация. С нашей точки зрения, живые системы приспосабливаются к существующему в них уровню среднесуточных напряжений. Они способны их отслеживать и даже изменять. Из термина «среднесуточное напряжение» явствует, что это есть среднее напряжение, рассчитанное за сутки. Сутки являются оптимальным, наименьшим из наиболее стабильных глобальных природных ритмов на протяжении многих миллионов лет, в течение которых формировалась жизнь на Земле. С периодом около 24 часа, у человека обнаружено более 300 ритмически меняющихся физиологических функций. Отмечено, что некоторые суточные ритмы сохраняются в культуре тканей как животных, так и растений [5].

Для каждой точки, принадлежащей живой системе, существует некий оптимальный уровень среднесуточных напряжений. Он определяется механическим фактором. В соответствии с ним формируются живые системы и функционируют. При некоторых обстоятельствах уровень оптимальных среднесуточных напряжений может не совпадать с величиной фактических среднесуточных напряжений. Тогда между ними возникает разность, названная нами биоэффективным напряжением. Именно появление биоэффективных напряжений в органах и тканях живых систем и индуцирует в них биологические процессы. Это явление, названное нами биоиндукцией, наблюдается в норме и патологии во всех без исключения живых системах.

Зависимость между биоэффективными напряжениями и биологическими процессами определяется выявленной нами неизвестной ранее закономерностью, которая названа «закон биоиндукции». Он гласит: появляющиеся в живых системах биоэффективные напряжения, представляющие собой разность между фактическими и оптимальными среднесуточными напряжениями, индуцируют биологические процессы, нивелирующие их по принципу отрицательной обратной связи, а не ликвидируемые биоэффективные напряжения приводят к повреждению живых систем. Предтече установленной закономерности и ее частным случаем является «закон реконструирования кости» J. Wolff (1892) [7]. При появлении биоэффективных напряжений живые системы стремятся их ликвидировать в пределах своих возможностей, определенных генотипом. Одним из вариантов может быть изменение режима функционирования. Однако чаще всего порожденные в живой системе биологические процессы изменяют ее строение. При этом может происходить как коррекция уровня фактических среднесуточных напряжений, так и оптимальных, а в ряде случае и то, и другое одновременно. Рост и развитие живой системы в онтогенезе определяется именно этой закономерностью, так же как и те изменения, что наблюдаются при патологии. Уточнение характеристики механического фактора, влияющего на живые системы, дает в руки исследователей отправную точку для вычисления того, как быстро они способны нивелировать биоэффективные напряжения. Данное ключевое понятие морфомеханики названо «скорость биоиндукции» и может быть найдена по формуле:

vв = Δσв/Δt,

где: vв - скорость биоиндукции; Δt - интервал времени, за который живая система изменила величину градиента биоэффективного напряжения Δσв (см. также www. enet.ru/ ~archipov/).

На базе вышеизложенных положений разработан понятийный и оригинальный математический аппарат, позволяющий перевести биологию и медицину в разряд точных наук. Обрели научное обоснование представления о биологическом поле и биологической энергии. Размерность полученных их единиц измерения аналогичны подобным величинами в физике, что доказывает правомерность наших формул [1]. Указанное дает в руки врача и биолога новую методологию. Привлечение электронно-вычислительной техники позволяет более точно прогнозировать течение биологических процессов в норме и патологии, рассчитывать предполагаемые результаты лечения.

Литература:

1. Архипов-Балтийский С.В. Рассуждение о морфомеханике. Норма: В 2-х томах. – Калининград, 2004. – 820 с. (Рукопись, версия 1.4, испр. и доп.), www. enet.ru/ ~archipov/.

2. Донской Д.Д., Зациорский В.М. Биомеханика: Учебник для институтов физ. культ. – М.: Физкультура и спорт, 1979. – 264 с.

3. Лесгафт П.Ф. Избранные труды по анатомии. – М.: Медицина, 1968. – 372 с.

4. Николаев Л.П. Руководство по биомеханике в применении к ортопедии, травматологии и протезированию. – Киев: Государственное медицинское издательство УССР, 1947. – 316 с.

5. Оранский И.Е. Природные лечебные факторы и биологические ритмы. – М.: Медицина, 1988. – 288 с.

6. Fung Y.C. Biomechanics: motion, flow, stress and growth. - New York, Berlin, Heidelberg…: Springer-verlag, 1990. – 569 p.

7. Martin R.B., Burr D.B., Sharkey N.A. Skeletal tissue mechanics – New York, Berlin, Heidelberg: Springer verlag, 1998. – 392 p.

Автор:

Архипов С.В. – С.В. Архипов-Балтийский является псевдонимом, который использовался до начала 2006 года с целью более точной дифференцировки на научном поле.

Полесская центральная районная больница, ул.Советская д.4, 238630, г. Полесск, Калининградская область, Россия. тел. 011-58-35355. E-mail: archipovkgd@mail.ru , postmaster@archipov.koenig.ru

Ключевые слова:

морфомеханика, патогенез, коксартроз

Цитирование:

Архипов-Балтийский СВ. Морфомеханика как новая методология. Медэлектроника-2004. Средства медицинской электроники и новые медицинские технологии. Материалы Международной научно-технической конференции. Минск: БГУИР, 2004:79-82.

Примечания:

Тезисы опубликованы после августа 2004 года. Это одна из первых публикаций автора, посвященных морфомеханике живых систем и биологическому полю. Согласно теории морфомеханики изложенной в монографии «Рассуждение о морфомеханике» (2004), механический фактор является ключевым в патогенезе заболеваний тазобедренного сустава и изменений ligamentum capitis femoris (LCF).

Сайт www. enet.ru / ~archipov «Морфомеханика» в настоящее время доступен в архиве [web.archive.org]

СОДЕРЖАНИЕ РЕСУРСА

 Биомеханика и морфомеханика

Популярные статьи

Твердость LCF человека. Обзор

   твердость  ligamentum capitis femoris человека .   Обзор Архипов С.В.     Содержание [i]   Резюме [ii]   Введение [iii]   Понятие твердости [iv]   Твердость биологических тканей [v]   Субъективные оценки твердости LCF [vi]   Объективное измерение твердости LCF  [vii]   Практическая оценка твердости LCF [viii]   Список литературы [ix]   Приложение [i]   Резюме Представлены сведения о твердости ligamentum capitis femoris ( LCF ) в норме и патологии у человека и некоторых животных. [ii]   Введение В конце 20-го века наш предметный анализ доступных источников информации, показал, что характеристики LCF недостаточно освещены даже в специальной литературе. При этом общее представление о роли и функции анатомического элемента возможно составить на основе сведений о его механических свойствах. Указанное подвигло заняться собственными научными изысканиями. Параллельно накапливались и анализировались ...

LCF пингвина. Часть 1

  ligamentum capitis femoris  пингвина . Часть 1 Архипов С.В.     Содержание [i]   Резюме [ii]   Общие сведения [iii]   LCF у птиц [iv]   Материал исследования [v]   Таз пингвина [vi]   Вертлужная впадина пингвина [vii]   Список литератур ы [viii]   Приложения [i]   Резюме Обсуждена систематика и общие сведения о пингвинах, а также представлен обзор костной анатомии таза с акцентом на проксимальную область крепления ligamentum capitis femoris ( LCF ). [ii]   Общие сведения Пингвины – водоплавающие птицы представители семейства пингвиновых ( Spheniscidae ), отряда пингвинообразных ( Sphenisciformes ), надотряда плавающих птиц ( Impennes ), подкласса настоящих птиц ( Neornithes ), класса птицы ( Aves ) (1979НаумовНП_КарташевНН). Семейство пингвиновые ( Spheniscidae ), включает шесть родов – императорские ( Aptenodytes ), хохлатые ( Eudyptes ), малые ( Eudyptula ), великолепные ( Megadyptes ), антарктические ( Pygosce...

0cent.4Q158.1-2

  Содержание [i]   Аннотация [ii]   Оригинал текста [iii]   Перевод [iv]   Источник и ссылки [v]   Примечания [vi]   Автор и принадлежность [vii]   Ключевые слова [i]   Аннотация Фрагменты 1-2 c витка Мертвого моря 4 Q 158.1-2 , ранее содержавшего часть 32-й главы книги Берешит с упоминанием ligamentum capitis femoris ( LCF ). Нами осуществлен перевод реконструированного текста, который произвела M .М. Zahn (2009). Перевод на английский доступен по ссылке: 0 cent .4 Q 158.1-2 . [ii]   Оригинал текста Фотокопия Свиток Мертвого моря 4Q158, фрагменты 1-2 (Plate 138, Frag. 4 B-358482), материал – пергамент, текст – иврит, период – Иродианский. С нимок с экрана оригинала из коллекции The Leon Levy dead sea scrolls Digital Library collection; © 2025 Israel Antiquities Authority,   deadseascrolls.org.il   (Добросовестное использование с целью критики, изучения и сравнения; настройка резкости, коррекция цветопередачи, обозначения ...

Гибкость LCF человека. Обзор

  Гибкость ligamentum capitis femoris человека . Обзор Архипов С.В.       Содержание [i]   Резюме [ii]   Введение [iii]   Понятие гибкости [iv]   Ранние свидетельства о гибкости LCF [v]   Гибкость, пластичность, долговечность [vi]   Список литературы [vii]   Приложение [i]   Резюме Представлены основные сведения о гибкости ligamentum capitis femoris (LCF) человека  [ii]   Введение В конце 20-го века наш предметный анализ доступных источников информации, показал, что характеристики LCF недостаточно освещены даже в специальной литературе. При этом общее представление о роли и функции анатомического элемента возможно составить на основе сведений о его механических свойствах. Указанное подвигло заняться собственными научными изысканиями. Параллельно накапливались и анализировались мнения иных авторов. Этот процесс продолжается до сих пор. Здесь мы планируем собирать все значимые цитаты и мысли, касающиеся гибкости LCF ...

Размер LCF человека. Обзор

  размер ligamentum capitis femoris человека .   Обзор Архипов С.В.     Содержание [i]   Резюме [ii]   Введение [iii]   Античность и протоантичность [iv]   Средние века [v]   17-й век [vi]   18-й век [vii]   19-й век [viii]   20-й век [ix]   21-й век [x]   Оптимальные размеры [xi]   Список литературы [xii]   Приложение [i]   Резюме   Представлены сведения о размере ligamentum capitis femoris ( LCF ) в норме у человека. [ii]   Введение В конце 20-го века наш предметный анализ доступных источников информации, показал, что характеристики LCF недостаточно освещены даже в специальной литературе. При этом общее представление о роли и функции анатомического элемента возможно составить на основе сведений о его геометрических свойствах. Указанное подвигло заняться собственными научными изысканиями. Параллельно накапливались и анализировались мнения иных авторов. Этот процесс продолжается до сих пор...